
Securing e-voting systems

Lorena Ronquillo

lron@demtech.dk

12/05/2015

12/05/2015 1 / 50



This Lecture

1 Introduction to e-voting

2 Secret sharing

3 Homomorphic encryption

4 Mixing

5 Zero-knowledge proof of knowledge

6 Some e-voting systems
Helios voting sytem
EVA

This Lecture 12/05/2015 2 / 50



Introduction to e-voting



E-voting systems

Electronic voting (also known as e-voting) is voting using electronic systems to
aid casting and counting votes.

We can identify two types:

electronic voting machines located at polling stations (including
direct-recording electronic voting systems, or DRE)

remote voting, also called Internet voting.

Introduction to e-voting 12/05/2015 3 / 50



Countries using Internet voting (I)

Some countries using Internet voting are:

France: for citizens living abroad.

Norway: pilots in 2011 and 2013 for local and national elections.
Discontinued.

Estonia: for municipal and parliamentary elections since 2005.

Switzerland: in several cantons.

Australia (New South Wales, Victoria)

Canada: municipal and provincial elections.

Introduction to e-voting 12/05/2015 4 / 50



Countries using Internet voting (II)

Source: e-voting.cc

Introduction to e-voting 12/05/2015 5 / 50



Supporters and opponents arguments

© :
Reducing costs of conducting an election or referendum

Delivering election results reliably and more quickly

Providing additional voting channels to increase voter turnout

Increasing the number of elections more easily

Improving access to the voting process to people with disabilities

Bringing voting in line with new developments in society and increasing
use of new technologies

§ :
Risk of (large-scale) manipulation by (small group of) insiders

More difficult to detect and identify the source of errors and technical
malfunctions than with conventional procedures

Need for additional voter education campaigns

Risk of (loosing) public trust in the election/referendum process

Introduction to e-voting 12/05/2015 6 / 50



Supporters and opponents arguments

© :
Reducing costs of conducting an election or referendum

Delivering election results reliably and more quickly

Providing additional voting channels to increase voter turnout

Increasing the number of elections more easily

Improving access to the voting process to people with disabilities

Bringing voting in line with new developments in society and increasing
use of new technologies

§ :
Risk of (large-scale) manipulation by (small group of) insiders

More difficult to detect and identify the source of errors and technical
malfunctions than with conventional procedures

Need for additional voter education campaigns

Risk of (loosing) public trust in the election/referendum process

Introduction to e-voting 12/05/2015 6 / 50



Security requirements

Integrity: the outcome should match voters intent.

I Individual verifiability: the voter should be able to verify that

F cast as intended
F recorded as cast
F counted as recorded

I Universal verifiability: any interested party shoud be able to verify

that the tally is correct.

Eligibility: only legitimate voters can cast votes.

Privacy: nobody can figure out how a voter voted.

Receipt-freeness: a voter should not be able to prove how she voted.

Coercion-resistance: no party should be able to force another party to
vote in a certain way or abstain from voting.

Fairness: no partial results should be known before the election is closed.

Availability, accessibility, etc.

Introduction to e-voting 12/05/2015 7 / 50



Security requirements

Integrity: the outcome should match voters intent.

I Individual verifiability: the voter should be able to verify that

F cast as intended
F recorded as cast
F counted as recorded

I Universal verifiability: any interested party shoud be able to verify

that the tally is correct.

Eligibility: only legitimate voters can cast votes.

Privacy: nobody can figure out how a voter voted.

Receipt-freeness: a voter should not be able to prove how she voted.

Coercion-resistance: no party should be able to force another party to
vote in a certain way or abstain from voting.

Fairness: no partial results should be known before the election is closed.

Availability, accessibility, etc.

Introduction to e-voting 12/05/2015 7 / 50



Security requirements

Integrity: the outcome should match voters intent.

I Individual verifiability: the voter should be able to verify that

F cast as intended
F recorded as cast
F counted as recorded

I Universal verifiability: any interested party shoud be able to verify

that the tally is correct.

Eligibility: only legitimate voters can cast votes.

Privacy: nobody can figure out how a voter voted.

Receipt-freeness: a voter should not be able to prove how she voted.

Coercion-resistance: no party should be able to force another party to
vote in a certain way or abstain from voting.

Fairness: no partial results should be known before the election is closed.

Availability, accessibility, etc.

Introduction to e-voting 12/05/2015 7 / 50



Security requirements

Integrity: the outcome should match voters intent.

I Individual verifiability: the voter should be able to verify that

F cast as intended
F recorded as cast
F counted as recorded

I Universal verifiability: any interested party shoud be able to verify

that the tally is correct.

Eligibility: only legitimate voters can cast votes.

Privacy: nobody can figure out how a voter voted.

Receipt-freeness: a voter should not be able to prove how she voted.

Coercion-resistance: no party should be able to force another party to
vote in a certain way or abstain from voting.

Fairness: no partial results should be known before the election is closed.

Availability, accessibility, etc.

Introduction to e-voting 12/05/2015 7 / 50



Security requirements

Integrity: the outcome should match voters intent.

I Individual verifiability: the voter should be able to verify that

F cast as intended
F recorded as cast
F counted as recorded

I Universal verifiability: any interested party shoud be able to verify

that the tally is correct.

Eligibility: only legitimate voters can cast votes.

Privacy: nobody can figure out how a voter voted.

Receipt-freeness: a voter should not be able to prove how she voted.

Coercion-resistance: no party should be able to force another party to
vote in a certain way or abstain from voting.

Fairness: no partial results should be known before the election is closed.

Availability, accessibility, etc.

Introduction to e-voting 12/05/2015 7 / 50



Security requirements

Integrity: the outcome should match voters intent.

I Individual verifiability: the voter should be able to verify that

F cast as intended
F recorded as cast
F counted as recorded

I Universal verifiability: any interested party shoud be able to verify

that the tally is correct.

Eligibility: only legitimate voters can cast votes.

Privacy: nobody can figure out how a voter voted.

Receipt-freeness: a voter should not be able to prove how she voted.

Coercion-resistance: no party should be able to force another party to
vote in a certain way or abstain from voting.

Fairness: no partial results should be known before the election is closed.

Availability, accessibility, etc.

Introduction to e-voting 12/05/2015 7 / 50



Security requirements

Integrity: the outcome should match voters intent.

I Individual verifiability: the voter should be able to verify that

F cast as intended
F recorded as cast
F counted as recorded

I Universal verifiability: any interested party shoud be able to verify

that the tally is correct.

Eligibility: only legitimate voters can cast votes.

Privacy: nobody can figure out how a voter voted.

Receipt-freeness: a voter should not be able to prove how she voted.

Coercion-resistance: no party should be able to force another party to
vote in a certain way or abstain from voting.

Fairness: no partial results should be known before the election is closed.

Availability, accessibility, etc.

Introduction to e-voting 12/05/2015 7 / 50



Election verifiability vs. ballot privacy
Hand raising processes for voting are fully verifiable but...

... they are not private at all!

Non-verifiable voting schemes might be fully private (using standard crypto and
a completely trusted decryption and counting system) but...

... there is no way for us to check that the tally is correct!

Usually the voting process produces an audit trail (electronic, of paper, or both)
for verifiability.

There is a compromise between correctness and privacy that needs to be
made in the vast majority of the verifiable voting schemes.

Introduction to e-voting 12/05/2015 8 / 50



Election verifiability vs. ballot privacy
Hand raising processes for voting are fully verifiable but...

... they are not private at all!

Non-verifiable voting schemes might be fully private (using standard crypto and
a completely trusted decryption and counting system) but...

... there is no way for us to check that the tally is correct!

Usually the voting process produces an audit trail (electronic, of paper, or both)
for verifiability.

There is a compromise between correctness and privacy that needs to be
made in the vast majority of the verifiable voting schemes.

Introduction to e-voting 12/05/2015 8 / 50



Election verifiability vs. ballot privacy
Hand raising processes for voting are fully verifiable but...

... they are not private at all!

Non-verifiable voting schemes might be fully private (using standard crypto and
a completely trusted decryption and counting system) but...

... there is no way for us to check that the tally is correct!

Usually the voting process produces an audit trail (electronic, of paper, or both)
for verifiability.

There is a compromise between correctness and privacy that needs to be
made in the vast majority of the verifiable voting schemes.

Introduction to e-voting 12/05/2015 8 / 50



Election verifiability vs. ballot privacy
Hand raising processes for voting are fully verifiable but...

... they are not private at all!

Non-verifiable voting schemes might be fully private (using standard crypto and
a completely trusted decryption and counting system) but...

... there is no way for us to check that the tally is correct!

Usually the voting process produces an audit trail (electronic, of paper, or both)
for verifiability.

There is a compromise between correctness and privacy that needs to be
made in the vast majority of the verifiable voting schemes.

Introduction to e-voting 12/05/2015 8 / 50



Election verifiability vs. ballot privacy
Hand raising processes for voting are fully verifiable but...

... they are not private at all!

Non-verifiable voting schemes might be fully private (using standard crypto and
a completely trusted decryption and counting system) but...

... there is no way for us to check that the tally is correct!

Usually the voting process produces an audit trail (electronic, of paper, or both)
for verifiability.

There is a compromise between correctness and privacy that needs to be
made in the vast majority of the verifiable voting schemes.

Introduction to e-voting 12/05/2015 8 / 50



Election verifiability vs. ballot privacy
Hand raising processes for voting are fully verifiable but...

... they are not private at all!

Non-verifiable voting schemes might be fully private (using standard crypto and
a completely trusted decryption and counting system) but...

... there is no way for us to check that the tally is correct!

Usually the voting process produces an audit trail (electronic, of paper, or both)
for verifiability.

There is a compromise between correctness and privacy that needs to be
made in the vast majority of the verifiable voting schemes.

Introduction to e-voting 12/05/2015 8 / 50



Achieving privacy

E-voting uses public-key cryptography:

public key: used by voters to encrypt their vote.

private key: generated by the election authority and necessary to decrypt
the encrypted votes and compute the final tally.

Many different encryption algorithms can be used, but the most common one is
ElGamal.

Introduction to e-voting 12/05/2015 9 / 50



Key storage
How to secure the secret key of an election?

Encrypting the key: vicious cycle.

Replicating the key: insecure.

Problem: we don’t want the whole privacy of the votes to rely on one single
election authority!

Idea: Distribute the key to a group of people, such that nobody by himself
knows it.

Introduction to e-voting 12/05/2015 10 / 50



Key storage
How to secure the secret key of an election?

Encrypting the key: vicious cycle.

Replicating the key: insecure.

Problem: we don’t want the whole privacy of the votes to rely on one single
election authority!

Idea: Distribute the key to a group of people, such that nobody by himself
knows it.

Introduction to e-voting 12/05/2015 10 / 50



Key storage
How to secure the secret key of an election?

Encrypting the key: vicious cycle.

Replicating the key: insecure.

Problem: we don’t want the whole privacy of the votes to rely on one single
election authority!

Idea: Distribute the key to a group of people, such that nobody by himself
knows it.

Introduction to e-voting 12/05/2015 10 / 50



Key storage
How to secure the secret key of an election?

Encrypting the key: vicious cycle.

Replicating the key: insecure.

Problem: we don’t want the whole privacy of the votes to rely on one single
election authority!

Idea: Distribute the key to a group of people, such that nobody by himself
knows it.

Introduction to e-voting 12/05/2015 10 / 50



Key storage
How to secure the secret key of an election?

Encrypting the key: vicious cycle.

Replicating the key: insecure.

Problem: we don’t want the whole privacy of the votes to rely on one single
election authority!

Idea: Distribute the key to a group of people, such that nobody by himself
knows it.

Introduction to e-voting 12/05/2015 10 / 50



Secret sharing



(k, n)-Secret sharing schemes
Also known as (k, n)-threshold schemes.

A dealer shares a secret key between n parties in such a way that

Each party i ∈ {1, . . . n} receives a share.

A group of any k participants can cooperate to reconstruct the secret
from their shares.

No group of less than k participants can get any information about the
secret.

Example:

The president of a company has 3 shares, the prime minister has 2 shares, and
other ministers have 1 share each. Then, by using a (3, n)-secret sharing
scheme the secret key will be recovered by either of these group of people:

the president

the prime minister and another minister

any three ministers

Secret sharing 12/05/2015 11 / 50



(k, n)-Secret sharing schemes
Also known as (k, n)-threshold schemes.

A dealer shares a secret key between n parties in such a way that

Each party i ∈ {1, . . . n} receives a share.

A group of any k participants can cooperate to reconstruct the secret
from their shares.

No group of less than k participants can get any information about the
secret.

Example:

The president of a company has 3 shares, the prime minister has 2 shares, and
other ministers have 1 share each. Then, by using a (3, n)-secret sharing
scheme the secret key will be recovered by either of these group of people:

the president

the prime minister and another minister

any three ministers

Secret sharing 12/05/2015 11 / 50



(2, 2)-Secret sharing schemes

Let s be a secret from a group (G,+). Dealer chooses at random s1
R←− G and

lets s2 = s− s1.

The two shares are s1 and s2.

Then,

Given s1 and s2 one can succesfully recover the secret s = s1 + s2.

Given only s1 (or only s2), the other share is random.

Secret sharing 12/05/2015 12 / 50



(2, 2)-Secret sharing schemes

Let s be a secret from a group (G,+). Dealer chooses at random s1
R←− G and

lets s2 = s− s1.

The two shares are s1 and s2.

Then,

Given s1 and s2 one can succesfully recover the secret s = s1 + s2.

Given only s1 (or only s2), the other share is random.

Secret sharing 12/05/2015 12 / 50



Shamir’s (k, n)-threshold scheme (I)
Dealing phase

Let s be a secret from some Zp, with p prime.

The dealer selects a random polynomial of degree k − 1

f(x) = f0 + f1x+ fxx
2 + · · ·+ fk−1x

k−1

where

coefficients f1, . . . , fk−1 are selected at random from Zp

f0 = s

For i ∈ {1, . . . , n}, the dealer distributes the share si = (i, f(i)) to party i.

Secret sharing 12/05/2015 13 / 50



Shamir’s (k, n)-threshold scheme (II)
Reconstruction phase

The secret s can be reconstructed from every subset of k shares.
By the Lagrange formula, given k points (xi, yi), with i = 1, . . . , k,

f(x) =
k∑

i=1

yi

k∏
j=1,j 6=i

x− xj

xi − xj
(mod p)

and thus

s = f(0) =
k∑

i=1

yi

k∏
j=1,j 6=i

−xj

xi − xj
(mod p).

Secret sharing 12/05/2015 14 / 50



Shamir’s scheme: security

Given less than k shares, the secret s (point (0, s) at the graph) can have any
value.

Secret sharing 12/05/2015 15 / 50



Shamir’s scheme: flexibility

We can increase n and add new shares without affecting other shares.

Existing shares can be removed without affecting other shares (the share
needs to be really destroyed).

It is possible to replace all the shares (or just k shares) without changing
the secret by selecting a new polynomial f̂(x) and a new set of shares
(proactive security).

There exist a distributed version of Shamir’s scheme that avoids having a
dealer.

Secret sharing 12/05/2015 16 / 50



Now we have

a way to keep the votes secret (encryption),

a way to safely store the election secret key (secret sharing).

1 The election secret key is shared among a group of election authorities.
The public key of the election is derived from the private key.

2 Voters encrypt their vote using the public key and post them in the
bulletin board.

3 The election authorities join their shares and recover the secret key to
decrypt every ciphertext and compute the tally.

We have to decrypt every ciphertext one by one before counting, can we do
better?

Secret sharing 12/05/2015 17 / 50



Now we have

a way to keep the votes secret (encryption),

a way to safely store the election secret key (secret sharing).

1 The election secret key is shared among a group of election authorities.
The public key of the election is derived from the private key.

2 Voters encrypt their vote using the public key and post them in the
bulletin board.

3 The election authorities join their shares and recover the secret key to
decrypt every ciphertext and compute the tally.

We have to decrypt every ciphertext one by one before counting, can we do
better?

Secret sharing 12/05/2015 17 / 50



Now we have

a way to keep the votes secret (encryption),

a way to safely store the election secret key (secret sharing).

1 The election secret key is shared among a group of election authorities.
The public key of the election is derived from the private key.

2 Voters encrypt their vote using the public key and post them in the
bulletin board.

3 The election authorities join their shares and recover the secret key to
decrypt every ciphertext and compute the tally.

We have to decrypt every ciphertext one by one before counting, can we do
better?

Secret sharing 12/05/2015 17 / 50



Homomorphic encryption



What is homomorphic encryption?

Homomorphic encryption allows computing on data while it is encrypted rather
than having to decrypt it first.

Homomorphic encryption 12/05/2015 18 / 50



Refreshing ElGamal cryptosystem

Gen: Select a subgroup G ⊂ Z∗p of order q, and a generator g of G. Choose
a←−

R
Zq.

Private key: a

Public key: y = ga

Enc: To encrypt a message m ∈ G, we choose b←−
R

Zq. The ciphertext is then

(c, d) = (gb,m · yb).

Dec: To decrypt the ciphertext (c, d), compute

m =
d

(c)a
.

Homomorphic encryption 12/05/2015 19 / 50



Multiplicative homomorphism

ElGamal encryption has a multiplicative homomorphic property.

Consider two encryptions (under the same public key y)

encryption of m1 (c1, d1) = (gb1 ,m1 · yb1),

encryption of m2 (c2, d2) = (gb2 ,m2 · yb2).

Multiplying these two ciphertexts we obtain

(c1 · c2, d1 · d2) =(gb1 · gb2 ,m1 ·m2 · yb1 · yb2)

=(gb1+b2 ,m1 ·m2 · yb1+b2) encryption of m1 ·m2

Homomorphic encryption 12/05/2015 20 / 50



Multiplicative homomorphism

ElGamal encryption has a multiplicative homomorphic property.

Consider two encryptions (under the same public key y)

encryption of m1 (c1, d1) = (gb1 ,m1 · yb1),

encryption of m2 (c2, d2) = (gb2 ,m2 · yb2).

Multiplying these two ciphertexts we obtain

(c1 · c2, d1 · d2) =(gb1 · gb2 ,m1 ·m2 · yb1 · yb2)

=(gb1+b2 ,m1 ·m2 · yb1+b2) encryption of m1 ·m2

Homomorphic encryption 12/05/2015 20 / 50



Multiplicative homomorphism

ElGamal encryption has a multiplicative homomorphic property.

Consider two encryptions (under the same public key y)

encryption of m1 (c1, d1) = (gb1 ,m1 · yb1),

encryption of m2 (c2, d2) = (gb2 ,m2 · yb2).

Multiplying these two ciphertexts we obtain

(c1 · c2, d1 · d2) =(gb1 · gb2 ,m1 ·m2 · yb1 · yb2)

=(gb1+b2 ,m1 ·m2 · yb1+b2) encryption of m1 ·m2

Homomorphic encryption 12/05/2015 20 / 50



Additive Homomorphism

E-voting would benefit from an additive homomorphism.

Solution: modify ElGamal. Put the plaintext in the exponent.

Homomorphic encryption 12/05/2015 21 / 50



Additive Homomorphism

E-voting would benefit from an additive homomorphism.

Solution: modify ElGamal. Put the plaintext in the exponent.

Homomorphic encryption 12/05/2015 21 / 50



Exponential ElGamal

Instead of encrypting a message m ∈ G, we encrypt a message gm ∈ G, where
g is a generator in G.

Consider two encryptions

encryption of gm1 (c1, d1) = (gb1 , gm1 · yb1),

encryption of gm2 (c2, d2) = (gb2 , gm2 · yb2).

Multiplying these two ciphertexts we obtain

(c1 · c2, d1 · d2) =(gb1 · gb2 , gm1 · gm2 · yb1 · yb2)

=(gb1+b2 , gm1+m2 · yb1+b2) encryption of gm1+m2

If m1 +m2 are not too big, it is possible to efficiently solve the discrete
logarithm of gm1+m2 and thus obtain m1 +m2.

Homomorphic encryption 12/05/2015 22 / 50



Exponential ElGamal

Instead of encrypting a message m ∈ G, we encrypt a message gm ∈ G, where
g is a generator in G.

Consider two encryptions

encryption of gm1 (c1, d1) = (gb1 , gm1 · yb1),

encryption of gm2 (c2, d2) = (gb2 , gm2 · yb2).

Multiplying these two ciphertexts we obtain

(c1 · c2, d1 · d2) =(gb1 · gb2 , gm1 · gm2 · yb1 · yb2)

=(gb1+b2 , gm1+m2 · yb1+b2) encryption of gm1+m2

If m1 +m2 are not too big, it is possible to efficiently solve the discrete
logarithm of gm1+m2 and thus obtain m1 +m2.

Homomorphic encryption 12/05/2015 22 / 50



Exponential ElGamal

Instead of encrypting a message m ∈ G, we encrypt a message gm ∈ G, where
g is a generator in G.

Consider two encryptions

encryption of gm1 (c1, d1) = (gb1 , gm1 · yb1),

encryption of gm2 (c2, d2) = (gb2 , gm2 · yb2).

Multiplying these two ciphertexts we obtain

(c1 · c2, d1 · d2) =(gb1 · gb2 , gm1 · gm2 · yb1 · yb2)

=(gb1+b2 , gm1+m2 · yb1+b2) encryption of gm1+m2

If m1 +m2 are not too big, it is possible to efficiently solve the discrete
logarithm of gm1+m2 and thus obtain m1 +m2.

Homomorphic encryption 12/05/2015 22 / 50



Homomorphic encryption and e-voting (I)

Example
Let y be the public key of an election.

We assume that each vote is a yes (3) or no for each candidate, encoded by 1
and 0, respectively.

Suppose Alice, Bob and Oscar are running as candidates in an election. Only 5
people voted in the election, and the results are tabulated below.

Oscar Bob Alice

voter 1 3

voter 2 3

voter 3 3

voter 4 3

voter 5 3

Homomorphic encryption 12/05/2015 23 / 50



Homomorphic encryption and e-voting (II)

Casting a vote

Each voter posts to the bulletin board (BB) the following encrypted ballots:

BB Oscar Bob Alice

voter 1 (gr11 , g0yr11) (gr12 , g0yr12) (gr13 , g1yr13)

voter 2 (gr21 , g0yr21) (gr22 , g1yr22) (gr23 , g0yr23)

voter 3 (gr31 , g0yr31) (gr32 , g1y32) (gr33 , g0yr33)

voter 4 (gr41 , g0yr41) (gr42 , g0yr42) (gr43 , g1yr43)

voter 5 (gr51 , g1yr51) (gr52 , g0yr52) (gr53 , g0yr53)

Homomorphic encryption 12/05/2015 24 / 50



Homomorphic encryption and e-voting (III)
Tally of the election

BB Oscar Bob Alice

voter 1 (gr11 , g0yr11) (gr12 , g0yr12) (gr13 , g1yr13)

voter 2 (gr21 , g0yr21) (gr22 , g1yr22) (gr23 , g0yr23)

voter 3 (gr31 , g0yr31) (gr32 , g1y32) (gr33 , g0yr33)

voter 4 (gr41 , g0yr41) (gr42 , g0yr42) (gr43 , g1yr43)

voter 5 (gr51 , g1yr51) (gr52 , g0yr52) (gr53 , g0yr53)

↓ multiplying

(gr, g1yr) (gr
′
, g2yr′) (gr

′′
, g2yr′′)

where r = r11 + r21 + . . .+ r51

r′ = r12 + r22 + . . .+ r52

r′′ = r13 + r23 + . . .+ r53

Decrypting using the private key of the election, we obtain g1, g2, g2.
These discrete logarithms are easy to compute, but can also be pre-computed
before the election (lookup table).

Homomorphic encryption 12/05/2015 25 / 50



1 The election secret key is shared among a group of election authorities.
The public key of the election is derived from the private key.

2 Voters encrypt their vote using the public key and post them in the
bulletin board.

3 Encrypted votes are multiplied (by candidate).

4 The election authorities join their shares and recover the secret key to
decrypt only one ciphertext per candidate and compute the tally.

What happens if the election authorities decrypt individual ballots instead of the
ones resulting from multiplying them?

The order in which data is stored in the bulletin board can be used to link the
identity of the voter to the value of the vote, if the order in which voters cast
their ballots is also observed.

Homomorphic encryption 12/05/2015 26 / 50



1 The election secret key is shared among a group of election authorities.
The public key of the election is derived from the private key.

2 Voters encrypt their vote using the public key and post them in the
bulletin board.

3 Encrypted votes are multiplied (by candidate).

4 The election authorities join their shares and recover the secret key to
decrypt only one ciphertext per candidate and compute the tally.

What happens if the election authorities decrypt individual ballots instead of the
ones resulting from multiplying them?

The order in which data is stored in the bulletin board can be used to link the
identity of the voter to the value of the vote, if the order in which voters cast
their ballots is also observed.

Homomorphic encryption 12/05/2015 26 / 50



1 The election secret key is shared among a group of election authorities.
The public key of the election is derived from the private key.

2 Voters encrypt their vote using the public key and post them in the
bulletin board.

3 Encrypted votes are multiplied (by candidate).

4 The election authorities join their shares and recover the secret key to
decrypt only one ciphertext per candidate and compute the tally.

What happens if the election authorities decrypt individual ballots instead of the
ones resulting from multiplying them?

The order in which data is stored in the bulletin board can be used to link the
identity of the voter to the value of the vote, if the order in which voters cast
their ballots is also observed.

Homomorphic encryption 12/05/2015 26 / 50



Mixing



What is a mixnet?

Mixing networks (aka mixnets) are a tool that enables a collection of servers to
take as input a collection of ciphertexts and to output the corresponding
ciphertexts, re-encrypted and shuffled according to a secret permutation.

Mixing 12/05/2015 27 / 50



Re-randomized encryption
Without knowing the secret key, modify the randomness used in the encryption
so that

The plaintext stays the same

The new encryption cannot be linked to the old one

With (exponential) ElGamal:

Let (c, d) = (gr, gm · yr) be an encryption of the plaintext gm using
randomness r.
We take an encryption (under the same public key y) of 1 using a random value
r′,

(c1, d1) = (gr
′
, g · yr′).

By multiplying these two ciphertexts

(c, d) · (c1, d1) = (gr+r′ , gm · yr+r′)

we obtain an encryption of the same plaintext gm but using a different
randomness.

Mixing 12/05/2015 28 / 50



Re-randomized encryption
Without knowing the secret key, modify the randomness used in the encryption
so that

The plaintext stays the same

The new encryption cannot be linked to the old one

With (exponential) ElGamal:

Let (c, d) = (gr, gm · yr) be an encryption of the plaintext gm using
randomness r.

We take an encryption (under the same public key y) of 1 using a random value
r′,

(c1, d1) = (gr
′
, g · yr′).

By multiplying these two ciphertexts

(c, d) · (c1, d1) = (gr+r′ , gm · yr+r′)

we obtain an encryption of the same plaintext gm but using a different
randomness.

Mixing 12/05/2015 28 / 50



Re-randomized encryption
Without knowing the secret key, modify the randomness used in the encryption
so that

The plaintext stays the same

The new encryption cannot be linked to the old one

With (exponential) ElGamal:

Let (c, d) = (gr, gm · yr) be an encryption of the plaintext gm using
randomness r.
We take an encryption (under the same public key y) of 1 using a random value
r′,

(c1, d1) = (gr
′
, g · yr′).

By multiplying these two ciphertexts

(c, d) · (c1, d1) = (gr+r′ , gm · yr+r′)

we obtain an encryption of the same plaintext gm but using a different
randomness.

Mixing 12/05/2015 28 / 50



Re-randomized encryption
Without knowing the secret key, modify the randomness used in the encryption
so that

The plaintext stays the same

The new encryption cannot be linked to the old one

With (exponential) ElGamal:

Let (c, d) = (gr, gm · yr) be an encryption of the plaintext gm using
randomness r.
We take an encryption (under the same public key y) of 1 using a random value
r′,

(c1, d1) = (gr
′
, g · yr′).

By multiplying these two ciphertexts

(c, d) · (c1, d1) = (gr+r′ , gm · yr+r′)

we obtain an encryption of the same plaintext gm but using a different
randomness.

Mixing 12/05/2015 28 / 50



1 The election secret key is shared among a group of election authorities.
The public key of the election is derived from the private key.

2 Voters encrypt their vote using the public key and post them in the
bulletin board.

3 At the end of the election, the mixnet takes those ciphertexts and
re-encrypts and permutes them.

4 The resulting encrypted votes are multiplied (by candidate).

5 The election authorities join their shares and recover the secret key to
decrypt only one ciphertext per candidate and compute the tally.

How can we make sure that everybody (voters, mixnet nodes, election
authorities, etc) is following the protocol and not cheating?

Mixing 12/05/2015 29 / 50



1 The election secret key is shared among a group of election authorities.
The public key of the election is derived from the private key.

2 Voters encrypt their vote using the public key and post them in the
bulletin board.

3 At the end of the election, the mixnet takes those ciphertexts and
re-encrypts and permutes them.

4 The resulting encrypted votes are multiplied (by candidate).

5 The election authorities join their shares and recover the secret key to
decrypt only one ciphertext per candidate and compute the tally.

How can we make sure that everybody (voters, mixnet nodes, election
authorities, etc) is following the protocol and not cheating?

Mixing 12/05/2015 29 / 50



Zero-knowledge proof of knowledge



Where is Waldo?

How can I prove to you that I know where Waldo is, without telling you where?

Zero-knowledge proof of knowledge 12/05/2015 30 / 50



Proofs

In a proof, a Prover wants to convince someone else (a Verifier) about
something.

If I know that X is true, and I want to convince you of that, I’ll try to present all
the facts I know and the inferences from that fact that imply that X is true.

Example: How can I prove that a number is not prime?

To prove that I know that 38477 is not prime, I will give you its factors, 109
and 353, and show you that indeed 38477 = 109 · 353.

Zero-knowledge proof of knowledge 12/05/2015 31 / 50



Proofs

In a proof, a Prover wants to convince someone else (a Verifier) about
something.

If I know that X is true, and I want to convince you of that, I’ll try to present all
the facts I know and the inferences from that fact that imply that X is true.

Example: How can I prove that a number is not prime?

To prove that I know that 38477 is not prime, I will give you its factors, 109
and 353, and show you that indeed 38477 = 109 · 353.

Zero-knowledge proof of knowledge 12/05/2015 31 / 50



Proofs

In a proof, a Prover wants to convince someone else (a Verifier) about
something.

If I know that X is true, and I want to convince you of that, I’ll try to present all
the facts I know and the inferences from that fact that imply that X is true.

Example: How can I prove that a number is not prime?

To prove that I know that 38477 is not prime, I will give you its factors, 109
and 353, and show you that indeed 38477 = 109 · 353.

Zero-knowledge proof of knowledge 12/05/2015 31 / 50



Zero-knowledge proofs

Typically, a proof yields some knowledge, beyond the fact that the statement
is true.

In the example, we learned not only that 38477 is not a prime, but we also
learned its factorization.
Zero-knowledge proofs try to avoid this.

Idea: Alice will prove to Bob that a statement X is true, Bob will be convinced
of that, but he will not learn anything as a result of this process.

Properties we expect from ZK-POK:

Completeness: if the statement is true, the verifier should always accept.

Soundness: if the statement is false, the verifier should reject with a high
probability.

Zero-knowledge: the verifier should not learn anything beyond the
validity of the statement. We say the verifier has gained knowledge from
the interaction if he can easily compute something that he couldn’t
efficiently compute before the interaction.

Zero-knowledge proof of knowledge 12/05/2015 32 / 50



Zero-knowledge proofs

Typically, a proof yields some knowledge, beyond the fact that the statement
is true.

In the example, we learned not only that 38477 is not a prime, but we also
learned its factorization.
Zero-knowledge proofs try to avoid this.

Idea: Alice will prove to Bob that a statement X is true, Bob will be convinced
of that, but he will not learn anything as a result of this process.

Properties we expect from ZK-POK:

Completeness: if the statement is true, the verifier should always accept.

Soundness: if the statement is false, the verifier should reject with a high
probability.

Zero-knowledge: the verifier should not learn anything beyond the
validity of the statement. We say the verifier has gained knowledge from
the interaction if he can easily compute something that he couldn’t
efficiently compute before the interaction.

Zero-knowledge proof of knowledge 12/05/2015 32 / 50



Zero-knowledge proofs

Typically, a proof yields some knowledge, beyond the fact that the statement
is true.

In the example, we learned not only that 38477 is not a prime, but we also
learned its factorization.
Zero-knowledge proofs try to avoid this.

Idea: Alice will prove to Bob that a statement X is true, Bob will be convinced
of that, but he will not learn anything as a result of this process.

Properties we expect from ZK-POK:

Completeness: if the statement is true, the verifier should always accept.

Soundness: if the statement is false, the verifier should reject with a high
probability.

Zero-knowledge: the verifier should not learn anything beyond the
validity of the statement. We say the verifier has gained knowledge from
the interaction if he can easily compute something that he couldn’t
efficiently compute before the interaction.

Zero-knowledge proof of knowledge 12/05/2015 32 / 50



Schnorr’s proof (I)
Schnorr suggested the following interactive zero-knowledge proof of knowledge
for the discrete logarithm.

Public parameters: a group G of order q, with generator g, and an element
h ∈ G.

Statement the prover wants to prove: I know the discrete logarithm of h with
respect to g.

Verifier Prover x : gx = h

a=gr←−−− r
R←− Zq (commitment)

(challenge) b
R←− Zq

b−−−→

c←−−− c = r + xb (mod q) (response)

accept iff:
ahb = gc

Zero-knowledge proof of knowledge 12/05/2015 33 / 50



Schnorr’s proof (I)
Schnorr suggested the following interactive zero-knowledge proof of knowledge
for the discrete logarithm.

Public parameters: a group G of order q, with generator g, and an element
h ∈ G.

Statement the prover wants to prove: I know the discrete logarithm of h with
respect to g.

Verifier Prover x : gx = h

a=gr←−−− r
R←− Zq (commitment)

(challenge) b
R←− Zq

b−−−→

c←−−− c = r + xb (mod q) (response)

accept iff:
ahb = gc

Zero-knowledge proof of knowledge 12/05/2015 33 / 50



Schnorr’s proof (I)
Schnorr suggested the following interactive zero-knowledge proof of knowledge
for the discrete logarithm.

Public parameters: a group G of order q, with generator g, and an element
h ∈ G.

Statement the prover wants to prove: I know the discrete logarithm of h with
respect to g.

Verifier Prover x : gx = h

a=gr←−−− r
R←− Zq (commitment)

(challenge) b
R←− Zq

b−−−→

c←−−− c = r + xb (mod q) (response)

accept iff:
ahb = gc

Zero-knowledge proof of knowledge 12/05/2015 33 / 50



Schnorr’s proof (I)
Schnorr suggested the following interactive zero-knowledge proof of knowledge
for the discrete logarithm.

Public parameters: a group G of order q, with generator g, and an element
h ∈ G.

Statement the prover wants to prove: I know the discrete logarithm of h with
respect to g.

Verifier Prover x : gx = h

a=gr←−−− r
R←− Zq (commitment)

(challenge) b
R←− Zq

b−−−→

c←−−− c = r + xb (mod q) (response)

accept iff:
ahb = gc

Zero-knowledge proof of knowledge 12/05/2015 33 / 50



Schnorr’s proof (I)
Schnorr suggested the following interactive zero-knowledge proof of knowledge
for the discrete logarithm.

Public parameters: a group G of order q, with generator g, and an element
h ∈ G.

Statement the prover wants to prove: I know the discrete logarithm of h with
respect to g.

Verifier Prover x : gx = h

a=gr←−−− r
R←− Zq (commitment)

(challenge) b
R←− Zq

b−−−→

c←−−− c = r + xb (mod q) (response)

accept iff:
ahb = gc

Zero-knowledge proof of knowledge 12/05/2015 33 / 50



Schnorr’s proof (I)
Schnorr suggested the following interactive zero-knowledge proof of knowledge
for the discrete logarithm.

Public parameters: a group G of order q, with generator g, and an element
h ∈ G.

Statement the prover wants to prove: I know the discrete logarithm of h with
respect to g.

Verifier Prover x : gx = h

a=gr←−−− r
R←− Zq (commitment)

(challenge) b
R←− Zq

b−−−→

c←−−− c = r + xb (mod q) (response)

accept iff:
ahb = gc

Zero-knowledge proof of knowledge 12/05/2015 33 / 50



Schnorr’s proof (II)

Properties of Schnorr’s proof:

Completeness: if gx = h, then the Verifier will be always convinced.

Soundness: if the Prover doesn’t know such x, the Verifier will reject with
high probability.

What did the Verifier learn from the proof?

He only learns that the Prover knows such x.

Schnorr proof is called a Sigma protocol. Sigma protocols have some
interesting properties:

can be repeated in parallel

can be nicely combined to prove I know a witness for x OR/AND for x′.

can be transformed into non-interactive zero-knowledge proofs.

Zero-knowledge proof of knowledge 12/05/2015 34 / 50



Schnorr’s proof (II)

Properties of Schnorr’s proof:

Completeness: if gx = h, then the Verifier will be always convinced.

Soundness: if the Prover doesn’t know such x, the Verifier will reject with
high probability.

What did the Verifier learn from the proof?

He only learns that the Prover knows such x.

Schnorr proof is called a Sigma protocol. Sigma protocols have some
interesting properties:

can be repeated in parallel

can be nicely combined to prove I know a witness for x OR/AND for x′.

can be transformed into non-interactive zero-knowledge proofs.

Zero-knowledge proof of knowledge 12/05/2015 34 / 50



Schnorr’s proof (II)

Properties of Schnorr’s proof:

Completeness: if gx = h, then the Verifier will be always convinced.

Soundness: if the Prover doesn’t know such x, the Verifier will reject with
high probability.

What did the Verifier learn from the proof?

He only learns that the Prover knows such x.

Schnorr proof is called a Sigma protocol. Sigma protocols have some
interesting properties:

can be repeated in parallel

can be nicely combined to prove I know a witness for x OR/AND for x′.

can be transformed into non-interactive zero-knowledge proofs.

Zero-knowledge proof of knowledge 12/05/2015 34 / 50



Schnorr’s proof (II)

Properties of Schnorr’s proof:

Completeness: if gx = h, then the Verifier will be always convinced.

Soundness: if the Prover doesn’t know such x, the Verifier will reject with
high probability.

What did the Verifier learn from the proof?

He only learns that the Prover knows such x.

Schnorr proof is called a Sigma protocol. Sigma protocols have some
interesting properties:

can be repeated in parallel

can be nicely combined to prove I know a witness for x OR/AND for x′.

can be transformed into non-interactive zero-knowledge proofs.

Zero-knowledge proof of knowledge 12/05/2015 34 / 50



Schnorr’s proof (II)

Properties of Schnorr’s proof:

Completeness: if gx = h, then the Verifier will be always convinced.

Soundness: if the Prover doesn’t know such x, the Verifier will reject with
high probability.

What did the Verifier learn from the proof?

He only learns that the Prover knows such x.

Schnorr proof is called a Sigma protocol. Sigma protocols have some
interesting properties:

can be repeated in parallel

can be nicely combined to prove I know a witness for x OR/AND for x′.

can be transformed into non-interactive zero-knowledge proofs.

Zero-knowledge proof of knowledge 12/05/2015 34 / 50



Sigma Protocols in e-voting
POK from the voter:

Proves: that the encrypted vote indeed contains one of the valid values
(i.e. 0 or 1), without revealing which of them.

It doesn’t reveal: the value itself.

POK by the election authorities:

Proves: that the decryption is correct, that is:

I they used the correct private key corresponding to the election

public key,
I the value they claim to be the result of the election indeed

corresponds to the counting of votes present in the bulletin board.

It doesn’t reveal: the election private key.

POK by each mixnet node:

Proves: that the re-encryption and shuffling have been done correctly.

It doesn’t reveal: the randomness used nor the permutation applied to the
ciphertexts.

Zero-knowledge proof of knowledge 12/05/2015 35 / 50



Sigma Protocols in e-voting
POK from the voter:

Proves: that the encrypted vote indeed contains one of the valid values
(i.e. 0 or 1), without revealing which of them.

It doesn’t reveal: the value itself.

POK by the election authorities:

Proves: that the decryption is correct, that is:

I they used the correct private key corresponding to the election

public key,
I the value they claim to be the result of the election indeed

corresponds to the counting of votes present in the bulletin board.

It doesn’t reveal: the election private key.

POK by each mixnet node:

Proves: that the re-encryption and shuffling have been done correctly.

It doesn’t reveal: the randomness used nor the permutation applied to the
ciphertexts.

Zero-knowledge proof of knowledge 12/05/2015 35 / 50



Sigma Protocols in e-voting
POK from the voter:

Proves: that the encrypted vote indeed contains one of the valid values
(i.e. 0 or 1), without revealing which of them.

It doesn’t reveal: the value itself.

POK by the election authorities:

Proves: that the decryption is correct, that is:

I they used the correct private key corresponding to the election

public key,
I the value they claim to be the result of the election indeed

corresponds to the counting of votes present in the bulletin board.

It doesn’t reveal: the election private key.

POK by each mixnet node:

Proves: that the re-encryption and shuffling have been done correctly.

It doesn’t reveal: the randomness used nor the permutation applied to the
ciphertexts.

Zero-knowledge proof of knowledge 12/05/2015 35 / 50



Some e-voting systems



Helios voting sytem



Helios voting system

Introduced in 2008 by Ben Adida. It is one of the e-voting systems more
studied by academics.

Web application for Internet voting: https://vote.heliosvoting.org

It is easy to use, open-source, provides end-to-end verifiability.

It constitutes a tool to support elections for companies, online groups, etc.
It is customizable (authentication, look-and-feel, translations).

Some e-voting systems Helios voting sytem 12/05/2015 36 / 50



Election process (I)

System initialization

1 The user creates the election by setting the parameters and the list of
eligible voters.

2 The software generates the ballot, private key, and public key.

Some e-voting systems Helios voting sytem 12/05/2015 37 / 50



Election process (II)

Vote casting

1 Every voter receives an e-mail containing her username, password, and the
URL of the election.

2 The Javascript application starts and downloads the public election
parameters.

3 The voter fills out the ballot, which is then encrypted by the application.

4 A hash of the encrypted vote is shown to the voter (receipt).

5 The voter has the option to audit the ballot. In this case the audited ballot
cannot be cast, and the voter should start the vote casting process again.

6 The voter authenticates herself into the election system.

7 The voter ID, password, the encrypted vote and the corresponding
ZK-POK are sent to the server.

Some e-voting systems Helios voting sytem 12/05/2015 38 / 50



Election process (III)

Tally and publication of votes

1 The Helios server publishes the encrypted votes, hashes and corresponding
ZK-POK on the bulletin board (website).

2 The server computes the election outcome with homomorphic tally (no
mixing).

Some e-voting systems Helios voting sytem 12/05/2015 39 / 50



EVA



Internet voting in Norway

Norway used Internet voting in the local elections of 2011 and in the
parliamentary elections of 2013.

Voter registration

Voters had to register their mobile phones with a centralized government
register.

Voters receive a special card, delivered through the postal service, with
personalized numeric return codes.

Return codes (cast-as-intended verification)

Return codes are four-digit numbers corresponding to each party running for
election, randomly assigned for every voter.

Some e-voting systems EVA 12/05/2015 40 / 50



Internet voting in Norway

Norway used Internet voting in the local elections of 2011 and in the
parliamentary elections of 2013.

Voter registration

Voters had to register their mobile phones with a centralized government
register.

Voters receive a special card, delivered through the postal service, with
personalized numeric return codes.

Return codes (cast-as-intended verification)

Return codes are four-digit numbers corresponding to each party running for
election, randomly assigned for every voter.

Some e-voting systems EVA 12/05/2015 40 / 50



Internet voting in Norway

Norway used Internet voting in the local elections of 2011 and in the
parliamentary elections of 2013.

Voter registration

Voters had to register their mobile phones with a centralized government
register.

Voters receive a special card, delivered through the postal service, with
personalized numeric return codes.

Return codes (cast-as-intended verification)

Return codes are four-digit numbers corresponding to each party running for
election, randomly assigned for every voter.

Some e-voting systems EVA 12/05/2015 40 / 50



Voting phase (I)
1 When ready to vote, the voter accesses a Javascript-based voting website

from his/her browser.

Some e-voting systems EVA 12/05/2015 41 / 50



Voting phase (II)

2 The voter is presented with the option of using one of several existing
authentication services to confirm their identity (banking, smartcard, or
the government MinID issued service).

Some e-voting systems EVA 12/05/2015 42 / 50



Voting phase (III)
3 The voter selects his/her choice and submits the ballot. The choice is

accepted in the Vote Collection Server (VCS).

Some e-voting systems EVA 12/05/2015 43 / 50



Voting phase (IV)

4 The Vote Collection Server communicates with the Return Code
Generator Server, which sends back an SMS text to the voter with the
appropriate personalized return code.

The voter then can match that code against his/her list of codes.

Some e-voting systems EVA 12/05/2015 44 / 50



Voting phase (V)
5 The voter is presented with a SHA-256 of his/her encrypted vote and

signature, that can be used to verify that the vote has been stored as cast
in the GitHub repository (stored-as-cast).

Some e-voting systems EVA 12/05/2015 45 / 50



Final election phase

This phase includes the Decryption and Counting Ceremony.

1 Cleansing : identifies the ballots to be counted.

Input: electoral roll, electronic ballot box.
Output: the ballots to be counted, ZK-POK of correct cleansing.

2 Mixing : cryptographically anonymizes the ballots.

Input: cleansed ballot box.
Output: mixed ballot box, ZK-POK of correct shuffling.

3 E-counting : decrypts and computes the final count.

Input: decryption key, mixed ballot box.
Output: electronic vote count, ZK-POK of correct decryption.

Some e-voting systems EVA 12/05/2015 46 / 50



Properties of the system
Supplements paper-based voting.

Coercion-resistant

repeat voting: voters can cast multiple electronic votes, and cancel them
by voting on paper.

Individual verifiability:

cast-as-intended : return-codes

stored-as-cast: hash of the encrypted vote

Universal verifiability:

Zero-knowledge proofs proving, for example,

I correct cleansing of ballots
I correct mixing of ballots
I correct decryption of ballots

Distribution of sensitive data

Secret sharing: 6 out of 9 shares needed to reconstruct the private key.

Some e-voting systems EVA 12/05/2015 47 / 50



The decryption and counting ceremony (I)

Some e-voting systems EVA 12/05/2015 48 / 50



The decryption and counting ceremony (II)

Some e-voting systems EVA 12/05/2015 49 / 50



Conclusion

E-voting is a true reality in several countries.

There is some hope that a secure and practical voting system will exist some
day... but there are still things to be improved.

Want to know more? See you at next week’s event of Science and Cocktails:
Securing Digital Democracy, in Christiania.

Conclusion 12/05/2015 50 / 50


	Introduction to e-voting
	Secret sharing
	Homomorphic encryption
	Mixing
	Zero-knowledge proof of knowledge
	Some e-voting systems
	Helios voting sytem
	EVA


