
Analyzing Vote Counting Algorithms Via Logic

Carsten Schürmann
IT University of Copenhagen

Joint work with

Bernhard Beckert
Karlsruhe Institute of Technology

Rajeev Gore
Australian National University

June 10, 2013

Single Transferable Vote

STV Ballot Form
Rank any number of candidates

in order of preference.

Alice

Bob

Charlie

Dave

1
2

3

“Standard” Version

0. Calculate the quota of votes.
1. Tally each ballot for its highest pref that

is neither elected nor defeated.
I Surplus votes go to next pref.

2. After all votes have been tallied:
I If there are more cands. than seats,

eliminate cand. with the fewest votes;
transfer his votes and re-tally (go to 1).

I If there are more seats than cands.,
then all remaining cands. are elected.

Many choices!
Many versions!

Single Transferable Vote

STV Ballot Form
Rank any number of candidates

in order of preference.

Alice

Bob

Charlie

Dave

1
2

3

“Standard” Version

0. Calculate the quota of votes.
1. Tally each ballot for its highest pref that

is neither elected nor defeated.
I Surplus votes go to next pref.

2. After all votes have been tallied:
I If there are more cands. than seats,

eliminate cand. with the fewest votes;
transfer his votes and re-tally (go to 1).

I If there are more seats than cands.,
then all remaining cands. are elected.

Many choices!
Many versions!

Single Transferable Vote

STV Ballot Form
Rank any number of candidates

in order of preference.

Alice

Bob

Charlie

Dave

1
2

3

“Standard” Version

0. Calculate the quota of votes.
1. Tally each ballot for its highest pref that

is neither elected nor defeated.
I Surplus votes go to next pref.

2. After all votes have been tallied:
I If there are more cands. than seats,

eliminate cand. with the fewest votes;
transfer his votes and re-tally (go to 1).

I If there are more seats than cands.,
then all remaining cands. are elected.

Many choices!
Many versions!

Example Quota: Q =
⌊ votes

seats+1

⌋
+1

Candidates: A, B, C, D

Q =
⌊

5
2+1

⌋
+1 = 2

Seats: 2

Votes:

A > B > D

1

A > B > D

2

A > B > D

1

D > C

2

C > D

Elected: A, D

Example Quota: Q =
⌊ votes

seats+1

⌋
+1

Candidates: A, B, C, D Q =
⌊

5
2+1

⌋
+1 = 2

Seats: 2

Votes:

A > B > D

1

A > B > D

2

A > B > D

1

D > C

2

C > D

Elected: A, D

Example Quota: Q =
⌊ votes

seats+1

⌋
+1

Candidates: A, B, C, D Q =
⌊

5
2+1

⌋
+1 = 2

Seats: 2

Votes:

A > B > D 1
A > B > D 2
A > B > D 3

1

D > C

2

C > D

Elected: A, D

Example Quota: Q =
⌊ votes

seats+1

⌋
+1

Candidates: A, B, C, D Q =
⌊

5
2+1

⌋
+1 = 2

Seats: 2

Votes:

A > B > D 1
A > B > D 2
A > B > D 3

1

D > C

2

C > D

Elected: A

, D

Example Quota: Q =
⌊ votes

seats+1

⌋
+1

Candidates: A, B, C, D Q =
⌊

5
2+1

⌋
+1 = 2

Seats: 2

Votes:

((((
(hhhhhA > B > D 1

((((
(hhhhhA > B > D 2

A > B > D 3

1

D > C

2

C > D

Elected: A

, D

Example Quota: Q =
⌊ votes

seats+1

⌋
+1

Candidates: A, B, C, D Q =
⌊

5
2+1

⌋
+1 = 2

Seats: 2

Votes:

((((
(hhhhhA > B > D

1

((((
(hhhhhA > B > D

2

�SA > B > D

1

D > C

2

C > D

Elected: A

, D

Example Quota: Q =
⌊ votes

seats+1

⌋
+1

Candidates: A, B, C, D Q =
⌊

5
2+1

⌋
+1 = 2

Seats: 2

Votes:

((((
(hhhhhA > B > D

1

((((
(hhhhhA > B > D

2

�SA >�SB > D

1

D > C

2

C > D

Elected: A

, D

Example Quota: Q =
⌊ votes

seats+1

⌋
+1

Candidates: A, B, C, D Q =
⌊

5
2+1

⌋
+1 = 2

Seats: 2

Votes:

((((
(hhhhhA > B > D

1

((((
(hhhhhA > B > D

2

�SA >�SB > D 1
D > C 2
C > D

Elected: A

, D

Example Quota: Q =
⌊ votes

seats+1

⌋
+1

Candidates: A, B, C, D Q =
⌊

5
2+1

⌋
+1 = 2

Seats: 2

Votes:

((((
(hhhhhA > B > D

1

((((
(hhhhhA > B > D

2

�SA >�SB > D 1
D > C 2
C > D

Elected: A, D

Declarative Properties of Voting Protocols

[https://en.wikipedia.org/wiki/Voting system]

Declarative Properties of Voting Systems (cont’d)
Condorcet criterion

I The voting scheme always elects a candidate who, when
compared with every other candidate, is preferred by more voters.

Monotonicity criterion

I A candidate x cannot be harmed if x is raised on some ballots
without changing the orders of the other candidates.

Majority criterion

I If one candidate is preferred by a majority (more than 50%) of
voters, then that candidate must win.

Declarative Properties of Voting Systems (cont’d)
Condorcet criterion

I The voting scheme always elects a candidate who, when
compared with every other candidate, is preferred by more voters.

Monotonicity criterion

I A candidate x cannot be harmed if x is raised on some ballots
without changing the orders of the other candidates.

Majority criterion

I If one candidate is preferred by a majority (more than 50%) of
voters, then that candidate must win.

Declarative Properties of Voting Systems (cont’d)
Condorcet criterion

I The voting scheme always elects a candidate who, when
compared with every other candidate, is preferred by more voters.

Monotonicity criterion

I A candidate x cannot be harmed if x is raised on some ballots
without changing the orders of the other candidates.

Majority criterion

I If one candidate is preferred by a majority (more than 50%) of
voters, then that candidate must win.

Single Transferable Vote @CADE

Quote from CADE Bylaws (legal document)

Procedure STV

Elected <-- empty
T <-- Tbl {* Start with the original vote matrix *}
for E <-- 1 to K

N’ <-- N-E+1 {* Choose a winner among N’ candidates *}
T’ <-- T {* store the current vote matrix *}
while (no candidate has a majority of 1st preferences)

w <-- one weakest candidate
for all candidates c {* remove all weakest candidates *}

if c is equally weak as w
Redistribute(c,T)

end for
end while
win <-- the majority candidate
Elected <-- append(Elected, [win])
T <-- T’ {* restore back to N’ candidates *}
Redistribute(win, T) {* remove winner & redistrb. votes *}

end for

End STV

What could go wrong?

Contributions

Celf – a Voting Algorithm Work Bench

Domain-Specific Declarative Criteria

Bounded Model-Checking

Findings

Celf

A Voting Algorithm Work
Bench

Linear Logical Voting Protocols [deYoung + CS ’11]

Informal Specification

Implementation

Legal Text

Linear Logical
Formulas

Formal
Specification

Celf [Schack-Nielsen+CS ’08]

I Law as specification

I Linear Inference

I Concise encodings

I Executlable proof search semantics

I Checkable certificates

Single Transferable Vote on a Single Slide

begin/1 :
begin(S,H,U)⊗
!(Q = U/(S+1)+1)

({!quota(Q)⊗
tally-votes(S,H,U)}

tally/1 :
tally-votes(S,H,U)⊗
uncounted-ballot(C,L)⊗
hopeful(C,N)⊗
!quota(Q)⊗ !(N+1 < Q)

({counted-ballot(C,L)⊗
hopeful(C,N+1)⊗
tally-votes(S,H,U−1)}

tally/2 :
tally-votes(S,H,U)⊗
uncounted-ballot(C,L)⊗
hopeful(C,N)⊗
!quota(Q)⊗ !(N+1≥ Q)⊗
!(S ≥ 1)

({counted-ballot(C,L)⊗
!elected(C)⊗
tally-votes(S−1,H−1,U−1)}

tally/3 :
tally-votes(S,H,U)⊗
uncounted-ballot(C, [C′ | L])⊗
(!elected(C)⊕ !defeated(C))

({uncounted-ballot(C′,L)⊗
tally-votes(S,H,U)}

tally/4 :
tally-votes(S,H,U)⊗
uncounted-ballot(C, [])⊗
(!elected(C)⊕ !defeated(C))

({tally-votes(S,H,U−1)}

tally/5 :
tally-votes(S,H,0)⊗
!(S < H)

({defeat-min(S,H,0)}

tally/6 :
tally-votes(S,H,0)⊗
!(S ≥ H)

({!elect-all}

defeat-min/1 :
defeat-min(S,H,M)⊗
hopeful(C,N)

({minimum(C,N)⊗
defeat-min(S,H−1,M+1)}

defeat-min/2 :
defeat-min(S,0,M)

({defeat-min′(S,0,M)}

defeat-min′/1 :
defeat-min′(S,H,M)⊗
minimum(C1 ,N1)⊗
minimum(C2 ,N2)⊗
!(N1 ≤ N2)

({minimum(C1 ,N1)⊗
hopeful(C2,N2)⊗
defeat-min′(S,H+1,M−1)}

defeat-min′/2 :
defeat-min′(S,H,1)⊗
minimum(C,N)

({!defeated(C)⊗
transfer(C,N,S,H,0)}

transfer/1 :
transfer(C,N,S,H,U)⊗
counted-ballot(C,L)

({uncounted-ballot(C,L)⊗
transfer(C,N−1,S,H,U+1)}

transfer/2 :
transfer(C,0,S,H,U)

({tally-votes(S,H,U)}

elect-all/1 :
!elect-all⊗
hopeful(C,N)

({!elected(C)}

From Legal Text to Formal Specification

Legal Text
“Tally the votes, assigning each ballot to its highest preference
candidate who is neither elected nor defeated.”

Detailed Reading tally/1 :
If we are tallying votes and tally-votes(S,H,U)⊗
there is an uncounted vote for C and uncounted-ballot(C,L)⊗
C is a hopeful with running tally N and hopeful(C,N)⊗
the quota wouldn’t be reached by this vote, !quota(Q)⊗ !(N+1 < Q)
then mark the ballot as counted and ({counted-ballot(C,L)⊗
update C’s tally to N+1 votes and hopeful(C,N+1)⊗
tally the remaining U−1 ballots. tally-votes(S,H,U−1)}

I Correspondence between legal text and logical formula is plain!

I Linearity: count ballots only once and update running tallies.

From Legal Text to Formal Specification

Legal Text
“Tally the votes, assigning each ballot to its highest preference
candidate who is neither elected nor defeated.”

Detailed Reading tally/1 :
If we are tallying votes and tally-votes(S,H,U)⊗
there is an uncounted vote for C and uncounted-ballot(C,L)⊗
C is a hopeful with running tally N and hopeful(C,N)⊗
the quota wouldn’t be reached by this vote, !quota(Q)⊗ !(N+1 < Q)
then mark the ballot as counted and ({counted-ballot(C,L)⊗
update C’s tally to N+1 votes and hopeful(C,N+1)⊗
tally the remaining U−1 ballots. tally-votes(S,H,U−1)}

I Correspondence between legal text and logical formula is plain!

I Linearity: count ballots only once and update running tallies.

From Legal Text to Formal Specification

Legal Text
“Tally the votes, assigning each ballot to its highest preference
candidate who is neither elected nor defeated.”

Detailed Reading tally/1 :
If we are tallying votes and tally-votes(S,H,U)⊗
there is an uncounted vote for C and uncounted-ballot(C,L)⊗
C is a hopeful with running tally N and hopeful(C,N)⊗
the quota wouldn’t be reached by this vote, !quota(Q)⊗ !(N+1 < Q)
then mark the ballot as counted and ({counted-ballot(C,L)⊗
update C’s tally to N+1 votes and hopeful(C,N+1)⊗
tally the remaining U−1 ballots. tally-votes(S,H,U−1)}

I Correspondence between legal text and logical formula is plain!

I Linearity: count ballots only once and update running tallies.

From Legal Text to Formal Specification

Legal Text
“Tally the votes, assigning each ballot to its highest preference
candidate who is neither elected nor defeated.”

Detailed Reading tally/1 :
If we are tallying votes and tally-votes(S,H,U)⊗
there is an uncounted vote for C and uncounted-ballot(C,L)⊗
C is a hopeful with running tally N and hopeful(C,N)⊗
the quota wouldn’t be reached by this vote, !quota(Q)⊗ !(N+1 < Q)
then mark the ballot as counted and ({counted-ballot(C,L)⊗
update C’s tally to N+1 votes and hopeful(C,N+1)⊗
tally the remaining U−1 ballots. tally-votes(S,H,U−1)}

I Correspondence between legal text and logical formula is plain!

I Linearity: count ballots only once and update running tallies.

From Legal Text to Formal Specification

Legal Text
“Tally the votes, assigning each ballot to its highest preference
candidate who is neither elected nor defeated.”

Detailed Reading tally/1 :
If we are tallying votes and tally-votes(S,H,U)⊗
there is an uncounted vote for C and uncounted-ballot(C,L)⊗
C is a hopeful with running tally N and hopeful(C,N)⊗
the quota wouldn’t be reached by this vote, !quota(Q)⊗ !(N+1 < Q)
then mark the ballot as counted and ({counted-ballot(C,L)⊗
update C’s tally to N+1 votes and hopeful(C,N+1)⊗
tally the remaining U−1 ballots. tally-votes(S,H,U−1)}

I Correspondence between legal text and logical formula is plain!

I Linearity: count ballots only once and update running tallies.

From Legal Text to Formal Specification

Legal Text
“Tally the votes, assigning each ballot to its highest preference
candidate who is neither elected nor defeated.”

Detailed Reading tally/1 :
If we are tallying votes and tally-votes(S,H,U)⊗
there is an uncounted vote for C and uncounted-ballot(C,L)⊗
C is a hopeful with running tally N and hopeful(C,N)⊗
the quota wouldn’t be reached by this vote, !quota(Q)⊗ !(N+1 < Q)
then mark the ballot as counted and ({counted-ballot(C,L)⊗
update C’s tally to N+1 votes and hopeful(C,N+1)⊗
tally the remaining U−1 ballots. tally-votes(S,H,U−1)}

I Correspondence between legal text and logical formula is plain!

I Linearity: count ballots only once and update running tallies.

From Legal Text to Formal Specification

Legal Text
“Tally the votes, assigning each ballot to its highest preference
candidate who is neither elected nor defeated.”

Detailed Reading tally/1 :
If we are tallying votes and tally-votes(S,H,U)⊗
there is an uncounted vote for C and uncounted-ballot(C,L)⊗
C is a hopeful with running tally N and hopeful(C,N)⊗
the quota wouldn’t be reached by this vote, !quota(Q)⊗ !(N+1 < Q)
then mark the ballot as counted and ({counted-ballot(C,L)⊗
update C’s tally to N+1 votes and hopeful(C,N+1)⊗
tally the remaining U−1 ballots. tally-votes(S,H,U−1)}

I Correspondence between legal text and logical formula is plain!

I Linearity: count ballots only once and update running tallies.

From Legal Text to Formal Specification

Legal Text
“Tally the votes, assigning each ballot to its highest preference
candidate who is neither elected nor defeated.”

Detailed Reading tally/1 :
If we are tallying votes and tally-votes(S,H,U)⊗
there is an uncounted vote for C and uncounted-ballot(C,L)⊗
C is a hopeful with running tally N and hopeful(C,N)⊗
the quota wouldn’t be reached by this vote, !quota(Q)⊗ !(N+1 < Q)
then mark the ballot as counted and ({counted-ballot(C,L)⊗
update C’s tally to N+1 votes and hopeful(C,N+1)⊗
tally the remaining U−1 ballots. tally-votes(S,H,U−1)}

I Correspondence between legal text and logical formula is plain!

I Linearity: count ballots only once and update running tallies.

From Legal Text to Formal Specification

Legal Text
“Tally the votes, assigning each ballot to its highest preference
candidate who is neither elected nor defeated.”

Detailed Reading tally/1 :
If we are tallying votes and tally-votes(S,H,U)⊗
there is an uncounted vote for C and uncounted-ballot(C,L)⊗
C is a hopeful with running tally N and hopeful(C,N)⊗
the quota wouldn’t be reached by this vote, !quota(Q)⊗ !(N+1 < Q)
then mark the ballot as counted and ({counted-ballot(C,L)⊗
update C’s tally to N+1 votes and hopeful(C,N+1)⊗
tally the remaining U−1 ballots. tally-votes(S,H,U−1)}

I Correspondence between legal text and logical formula is plain!

I Linearity: count ballots only once and update running tallies.

From Legal Text to Formal Specification

Legal Text
“Tally the votes, assigning each ballot to its highest preference
candidate who is neither elected nor defeated.”

Detailed Reading tally/1 :
If we are tallying votes and tally-votes(S,H,U)⊗
there is an uncounted vote for C and uncounted-ballot(C,L)⊗
C is a hopeful with running tally N and hopeful(C,N)⊗
the quota wouldn’t be reached by this vote, !quota(Q)⊗ !(N+1 < Q)
then mark the ballot as counted and ({counted-ballot(C,L)⊗
update C’s tally to N+1 votes and hopeful(C,N+1)⊗
tally the remaining U−1 ballots. tally-votes(S,H,U−1)}

I Correspondence between legal text and logical formula is plain!

I Linearity: count ballots only once and update running tallies.

From Legal Text to Formal Specification

Legal Text
“Tally the votes, assigning each ballot to its highest preference
candidate who is neither elected nor defeated.”

Detailed Reading tally/1 :
If we are tallying votes and tally-votes(S,H,U)⊗
there is an uncounted vote for C and uncounted-ballot(C,L)⊗
C is a hopeful with running tally N and hopeful(C,N)⊗
the quota wouldn’t be reached by this vote, !quota(Q)⊗ !(N+1 < Q)
then mark the ballot as counted and ({counted-ballot(C,L)⊗
update C’s tally to N+1 votes and hopeful(C,N+1)⊗
tally the remaining U−1 ballots. tally-votes(S,H,U−1)}

I Correspondence between legal text and logical formula is plain!

I Linearity: count ballots only once and update running tallies.

Parametrization

QUOTA/DROOP, QUOTA/HARE, QUOTA/MAJORITY

How to compute the quota?

TIE

Shall ties be broken?

ZOMBIE

Resurrection of already eliminated candidates?

AUTOFILL

Automatic placement of remaining candidates on remaining seats?

NODEL

Keep votes from one iteration to the next?

Domain-Specific
Declarative Criteria

Declarative Criteria

Electoral Systems

I Social choice functions
I Society agrees on basic democratic principles
I Optimization problem
I Voting algorithm computes a ”good” approximation

I Challenges for preferentional voting schemes

I Intractability [Procaccia et al. ’08]

I Impossibility [Arrow ’51]

I therefore formal verification IMPOSSIBLE in PRACTICE

Declarative Criteria (cont’d)

Criterion 1

There are enough votes for each elected candidate
(ignoring preferences)

Criterion 2

I Election result is consistent with union U of preferences
if U is consistent
(ignoring number of votes)

I related to Pareto criterion: If all voters rank X over Y, then Y
should not win

I See paper for details

Illustration of Criterion 1

Illustration of Criterion 1

Illustration of Criterion 1

Illustration of Criterion 1

I i ranges over votes

I k ranges over seats

I j ranges over preferences

I a[i] partition of votes

I r [k] who got elected

I b[i, j] ballot box

Declarative Criteria (cont’d)

Formalization of Criterion 1

∃a
(
∀i
(
1≤ i ≤ V→ 0≤ a[i]≤ S

)
∧

∀i
(
1≤ i ≤ V→ (a[i] 6= 0→ r [a[i]] 6= 0

)
∧

∀i
(
(1≤ i ≤ V∧a[i] 6= 0)→∃j(1≤ j ≤ C∧b[i, j] = r [a[i]])

)
∧

∀k
(
(1≤ k ≤ S∧ r [k] 6= 0)→
∃count(count[0] = 0∧
∀i(1≤ i ≤ V→ (a[i] = k → count[i] = count[i−1]+1)∧

(a[i] 6= k → count[i] = count[i−1]))∧
count[V] = Q)

))

Bounded Model-Checking

Bounded Model Checking Standard STV

Method

I Generate all possible ballot-boxes (up to certain bounds)

create-ballot/nil : create-ballot nil.
create-ballot/cons : create-ballot (cons C L)

@- candidate C
@- create-ballot L.

I Uses affine features of Celf

I Run STV
(with QUOTA/DROOP, AUTOFILL, TIE and not ZOMBIE, NODEL)

I Check result in Z3 [Bjorner et al.]

I Ballot boxes up to small size checked

Differences CADE-STV / Standard STV

CADE-STV

Parameter Choices

I QUOTA/MAJORITY: >50% of votes (majority)

I TIE: random

I ZOMBIE and NODEL: Restart with original ballot-box
(deleted votes and weakest candidates come back)

I AUTOFILL off: no automatic seating

Bounded Model Checking CADE-STV
Formalization of 1st Property in Z3

[[And(a[i] >= 0, a[i] <= S) for i in range(V).

Implies(And(a[i] != 0, a[i] == j), r[j] != 0)
for i in range(V) for j in range(S+1),

Implies(And(a[i] != 0, a[i] == pi),
Or([b[i][j] == r[pi] for j in range(C)]))

for i in range(V) for pi in range(S+1),

Implies(r[k] != 0,
Exists(count,
And(count[0] == 0, count[V] == Q,
And([And(Implies(a[i] == k, count[i+1] == count[i]+1),

Implies(a[i] != k, count[i+1] == count[i]))
for i in range(V)]))))

for k in range(S+1)
]]

Counter Example

Candidates: A, B, C, D

Q =
⌊

5
2

⌋
+1 = 3

Seats: 2

Votes:

A > B > D

1

A > B > D

2

A > B > D

3

D > C
C > D

Elected: A, B

No proportional representation!
Majority rules!

Counter Example

Candidates: A, B, C, D Q =
⌊

5
2

⌋
+1 = 3

Seats: 2

Votes:

A > B > D

1

A > B > D

2

A > B > D

3

D > C
C > D

Elected: A, B

No proportional representation!
Majority rules!

Counter Example

Candidates: A, B, C, D Q =
⌊

5
2

⌋
+1 = 3

Seats: 2

Votes:

A > B > D 1
A > B > D 2
A > B > D 3
D > C
C > D

Elected: A, B

No proportional representation!
Majority rules!

Counter Example

Candidates: A, B, C, D Q =
⌊

5
2

⌋
+1 = 3

Seats: 2

Votes:

A > B > D 1
A > B > D 2
A > B > D 3
D > C
C > D

Elected: A

, B

No proportional representation!
Majority rules!

Counter Example

Candidates: A, B, C, D Q =
⌊

5
2

⌋
+1 = 3

Seats: 2

Votes:

�SA > B > D 1
�SA > B > D 2
�SA > B > D 3
D > C
C > D

Elected: A

, B

No proportional representation!
Majority rules!

Counter Example

Candidates: A, B, C, D Q =
⌊

5
2

⌋
+1 = 3

Seats: 2

Votes:

�SA > B > D

1

�SA > B > D

2

�SA > B > D

3

D > C
C > D

Elected: A

, B

No proportional representation!
Majority rules!

Counter Example

Candidates: A, B, C, D Q =
⌊

5
2

⌋
+1 = 3

Seats: 2

Votes:

�SA > B > D 1
�SA > B > D 2
�SA > B > D 3
D > C
C > D

Elected: A

, B

No proportional representation!
Majority rules!

Counter Example

Candidates: A, B, C, D Q =
⌊

5
2

⌋
+1 = 3

Seats: 2

Votes:

�SA > B > D 1
�SA > B > D 2
�SA > B > D 3
D > C
C > D

Elected: A, B

No proportional representation!
Majority rules!

Counter Example

Candidates: A, B, C, D Q =
⌊

5
2

⌋
+1 = 3

Seats: 2

Votes:

�SA > B > D 1
�SA > B > D 2
�SA > B > D 3
D > C
C > D

Elected: A, B

No proportional representation!
Majority rules!

History

Concern [D. Plaisted, 1996]

[. . .] This means that the trustee nominees tend to be
elected even if only a minority is happy with the scheme.

“Solution”

1. QUOTA/MAJORITY, AUTOFILL off
=⇒ No one elected against wishes of majority

2. Restart: NODEL and ZOMBIES
=⇒ Seats get nevertheless filled (in practice)

But . . .

Majority rules

History

Concern [D. Plaisted, 1996]

[. . .] This means that the trustee nominees tend to be
elected even if only a minority is happy with the scheme.

“Solution”

1. QUOTA/MAJORITY, AUTOFILL off
=⇒ No one elected against wishes of majority

2. Restart: NODEL and ZOMBIES
=⇒ Seats get nevertheless filled (in practice)

But . . .

Majority rules

History

Concern [D. Plaisted, 1996]

[. . .] This means that the trustee nominees tend to be
elected even if only a minority is happy with the scheme.

“Solution”

1. QUOTA/MAJORITY, AUTOFILL off
=⇒ No one elected against wishes of majority

2. Restart: NODEL and ZOMBIES
=⇒ Seats get nevertheless filled (in practice)

But . . .

Majority rules

Conclusions

Conclusion

I Support in reasoning about voting schemes needed

I Can be automated with bounded model checking

I Tailor-made properties for specific voting systems needed

Secondary Conclusion

I Technology drives the evolution of voting algorithms.

Conclusions

Conclusion

I Support in reasoning about voting schemes needed

I Can be automated with bounded model checking

I Tailor-made properties for specific voting systems needed

Secondary Conclusion

I Technology drives the evolution of voting algorithms.

Conclusions

Conclusion

I Support in reasoning about voting schemes needed

I Can be automated with bounded model checking

I Tailor-made properties for specific voting systems needed

Secondary Conclusion

I Technology drives the evolution of voting algorithms.

	Celf – a Voting Algorithm Work Bench
	Domain-Specific Declarative Criteria
	Bounded Model-Checking
	Findings

