
Formal Methods in
Software Engineering

(Sensible Rigor)

Joe Kiniry
ITU & DemTech

R&D Methodology
1. find a problem that seems unsolvable and

which most are frightened to tackle

2. develop new mathematics (mainly logic) to
reason about the problem

3. develop a tool that demonstrates the new
mathematics on Real World programs

4. eat our own dog food: use our own tools,
and those of our colleagues around the
world, to develop our own tools

5. PROFIT! (release as Open Source, goto 1)

Ethical Hacking
• our other main agenda is ethical hacking

• as a public employee and a scientist-
activist, it is my duty to educate the public,
politicians, industry, policy-makers, and the
media about the risks and opportunities of
digital technologies

• targets over the past several years include
smart cards used for commerce and
transportation, electronic voting systems,
digital authentication systems, etc.

Election Software
Examples

• election framework/platforms

• KOA for kiosk-based and remote voting in the
Dutch (list-based) voting system

• tallying systems

• KOA tally system for the Netherlands

• Votáil for Ireland

• DIVS for Denmark

• voter registration, processing & ballot generation

Typical Process
• formal domain analysis using concept analysis and

the BON specification language

• formal architecture specification using one or
more specification languages like BON, JML, Z,
Event-B, VDM, Alloy, TLA, etc.

• concurrent, parallel, and distributed system design
using the CSP process calculus and UPPAAL

• formal reasoning about analysis and design using
tools which reason about the above languages
(incl. lightweight and semantic static analyses,
protocol analysis, model finding and model
checking, etc.)

Typical Process (II)
• automatic generation via refinement of formal

architecture specification into annotated source
code

• annotations are written in JML, Code
Contracts, or ACSL

• implementation is entirely done via Design by
Contract

• static and dynamic analysis of code using around
a dozen different technologies (lightweight and
heavyweight static analysis, runtime assertion
checking, model checking, etc.)

Typical Process (III)
• unit tests for all code are nearly all automatically

generated from the architecture and the
annotated code (typical statement coverage
>>95%)

• only high-level subsystem tests are hand-written
and are rigorously derived from high-level formal
models of the system (e.g., ASMs, protocol
descriptions, etc.)

• coverage and performance analysis and
integration and deployment testing performed
using FOSS and commercial tools (e.g., Emma,
JProbe, JetBrains’ many tools, Hudson, etc.)

Scope and Impact
• first year computer science students through

experienced professors with decades of
experience work together on these projects

• method and tools are taught at bachelor though
postgraduate levels

• consultancy in industry for over a decade

• hundreds of archived example projects

• dozens of research papers published

• dozens of research software systems shipped

• several books being written

