
Verifying Security Protocols in Tamarin

Ralf Sasse
Institute of Information Security

ETH Zurich

Tamarin Day 4, v.1
Jan 28, 2016

Roadmap

1 Observational Equivalence: High-Level Overview

2 Observational Equivalence Details

3 Case Studies

2 / 73

Observational Equivalence: High-Level Overview

Outline

1 Observational Equivalence: High-Level Overview

2 Observational Equivalence Details

3 Case Studies

3 / 73

Observational Equivalence: High-Level Overview

Motivation

• Security protocol design is critical and error-prone

• Symbolic analysis methods make a difference

Two types of properties:

• Trace properties:
F (Weak) secrecy as reachability
F Authentication as correspondence

.

.

• Observational equivalence ≈
4 / 73

Observational Equivalence: High-Level Overview

Why observational equivalence?
Consider classic Dolev-Yao intruder for deterministic public-key
encryption:

enc(x ,pk(k)) k
x

• Intruder can only decrypt if he knows the secret key

Now consider a simple voting system:

• Voter chooses v =“Yes” or v =“No”
• Encrypt v using server’s public key pk(k): c = enc(v ,pk(k))

• Send c to server

Is the vote secret?
• Dolev-Yao: Yes, intruder does not know server’s secret key
• Reality: No, encryption is deterministic and there are only two

choices
F Attack: encrypt “Yes”, and compare to c

5 / 73

Observational Equivalence: High-Level Overview

Why observational equivalence?
Consider classic Dolev-Yao intruder for deterministic public-key
encryption:

enc(x ,pk(k)) k
x

• Intruder can only decrypt if he knows the secret key

Now consider a simple voting system:

• Voter chooses v =“Yes” or v =“No”
• Encrypt v using server’s public key pk(k): c = enc(v ,pk(k))

• Send c to server

Is the vote secret?
• Dolev-Yao: Yes, intruder does not know server’s secret key
• Reality: No, encryption is deterministic and there are only two

choices
F Attack: encrypt “Yes”, and compare to c

5 / 73

Observational Equivalence: High-Level Overview

Why observational equivalence?
Consider classic Dolev-Yao intruder for deterministic public-key
encryption:

enc(x ,pk(k)) k
x

• Intruder can only decrypt if he knows the secret key

Now consider a simple voting system:

• Voter chooses v =“Yes” or v =“No”
• Encrypt v using server’s public key pk(k): c = enc(v ,pk(k))

• Send c to server

Is the vote secret?
• Dolev-Yao: Yes, intruder does not know server’s secret key

• Reality: No, encryption is deterministic and there are only two
choices

F Attack: encrypt “Yes”, and compare to c

5 / 73

Observational Equivalence: High-Level Overview

Why observational equivalence?
Consider classic Dolev-Yao intruder for deterministic public-key
encryption:

enc(x ,pk(k)) k
x

• Intruder can only decrypt if he knows the secret key

Now consider a simple voting system:

• Voter chooses v =“Yes” or v =“No”
• Encrypt v using server’s public key pk(k): c = enc(v ,pk(k))

• Send c to server

Is the vote secret?
• Dolev-Yao: Yes, intruder does not know server’s secret key
• Reality: No, encryption is deterministic and there are only two

choices
F Attack: encrypt “Yes”, and compare to c

5 / 73

Observational Equivalence: High-Level Overview

Observational Equivalence vs Reachability

• Reachability-based (weak) secrecy is insufficient

• Stronger notion: intruder cannot distinguish
F a system where the voter votes “Yes” from
F a system where the voter votes “No”

• Observational equivalence between two systems

• Can be used to express:
F Strong secrecy
F Privacy notions
F Game-based notions, e.g., ciphertext indistinguishability

6 / 73

Observational Equivalence: High-Level Overview

Observational Equivalence vs Reachability

• Reachability-based (weak) secrecy is insufficient

• Stronger notion: intruder cannot distinguish
F a system where the voter votes “Yes” from
F a system where the voter votes “No”

• Observational equivalence between two systems

• Can be used to express:
F Strong secrecy
F Privacy notions
F Game-based notions, e.g., ciphertext indistinguishability

6 / 73

Observational Equivalence: High-Level Overview

Observational Equivalence vs Reachability

• Reachability-based (weak) secrecy is insufficient

• Stronger notion: intruder cannot distinguish
F a system where the voter votes “Yes” from
F a system where the voter votes “No”

• Observational equivalence between two systems

• Can be used to express:
F Strong secrecy
F Privacy notions
F Game-based notions, e.g., ciphertext indistinguishability

6 / 73

Observational Equivalence: High-Level Overview

Running Example

• Auction system

• Property: strong secrecy of bids

• Property violated: Shout-out auction
F Broadcast bid (e.g., A or B)
F Send “A” in first system
F Send “B” in second system
F Observer knows if he is observing first or second system

• Property holds: using shared symmetric key
F Shared symmetric key k between bidder and auctioneer
F Send “{A}k ” in first system
F Send “{B}k ” in second system
F Observer has no access to k , does not know which system he is

observing

7 / 73

Observational Equivalence: High-Level Overview

Running Example

• Auction system

• Property: strong secrecy of bids

• Property violated: Shout-out auction
F Broadcast bid (e.g., A or B)
F Send “A” in first system
F Send “B” in second system
F Observer knows if he is observing first or second system

• Property holds: using shared symmetric key
F Shared symmetric key k between bidder and auctioneer
F Send “{A}k ” in first system
F Send “{B}k ” in second system
F Observer has no access to k , does not know which system he is

observing

7 / 73

Observational Equivalence: High-Level Overview

Running Example

• Auction system

• Property: strong secrecy of bids

• Property violated: Shout-out auction
F Broadcast bid (e.g., A or B)
F Send “A” in first system
F Send “B” in second system
F Observer knows if he is observing first or second system

• Property holds: using shared symmetric key
F Shared symmetric key k between bidder and auctioneer
F Send “{A}k ” in first system
F Send “{B}k ” in second system
F Observer has no access to k , does not know which system he is

observing

7 / 73

Observational Equivalence: High-Level Overview

Symbolic Model for Observational Equivalence

• Symbolic abstractions of cryptographic operators

• Enables high degree of automation for observational equivalence,
existing tools:

F APTE, AKISS, ProVerif, SPEC, Maude-NPA

• Limitations: No tool can prove observational equivalence for
protocols with combination of

F Mutable state
F Unbounded sessions
F Diffie-Hellman

• Examples of applications beyond state-of-the-art:
F Protocols using hardware security modules
F Key exchange protocols based on Diffie-Hellman

8 / 73

Observational Equivalence: High-Level Overview

Contribution: Tamarin

• Novel definition of observational equivalence
F General definition within context of multiset rewriting setting

• Sound algorithm, first to support all of:
F Observational equivalence
F Mutable state
F Unbounded number of sessions
F Diffie-Hellman exponentiation

• Implementation, practicality demonstrated by
F non-trivial protocols

• Largely automated proofs

• Approach is not complete, but succeeds broadly

9 / 73

Observational Equivalence: High-Level Overview

System and environment

• We separate environment and
system

F System: agents running according
to protocol

F Environment: adversary acting
according to its capabilities

• Environment can observe:
F Output of the system
F If system reacts at all

System Sys

Environment Env

InSys OutSys

Interface

OutEnv InEnv

10 / 73

Observational Equivalence: High-Level Overview

Defining observational equivalence

• Two system specifications given as set of rules
F One rule per role action (send/receive)
F Running example shout-out auction:

X
OutSys(A)

System 1:
X

OutSys(B)
System 2:

• Interface and environment/adversary rule(s):

OutSys(X)

InEnv (X)

OutEnv (X)

InSys(X)

InEnv (X) K (X)

OutEnv (true)

F K (X) represents that environment knows term X
F last rule models comparisons by the adversary

• Each specification yields a labeled transition system
• Observational equivalence is a kind of bisimulation accounting for

the adversaries’ viewpoint and capabilities
F Our definition can be instantiated for various adversaries

11 / 73

Observational Equivalence: High-Level Overview

Diff terms

• General definition difficult to verify: requires inventing simulation
relation
• Idea: specialize for cryptographic protocols

F Consider strong bid secrecy:
I both systems differ in secret bid only, i.e.
I both specifications contain same rule(s) which differ only in some terms

F Exploit this similarity in description and proof

• Approach: two systems described by one specification – using
diff-terms

F Running example

X
OutSys(A)

X
OutSys(B)

F Is equivalent to one rule with a diff-term

X
OutSys(diff(A,B))

12 / 73

Observational Equivalence: High-Level Overview

Diff terms

• General definition difficult to verify: requires inventing simulation
relation
• Idea: specialize for cryptographic protocols

F Consider strong bid secrecy:
I both systems differ in secret bid only, i.e.
I both specifications contain same rule(s) which differ only in some terms

F Exploit this similarity in description and proof

• Approach: two systems described by one specification – using
diff-terms

F Running example

X
OutSys(A)

X
OutSys(B)

F Is equivalent to one rule with a diff-term

X
OutSys(diff(A,B))

12 / 73

Observational Equivalence: High-Level Overview

Approximating observational equivalence using
mirroring

• Both systems contain the same rules modulo diff-terms

• Idea: assume that each rule simulates itself

• Mirrors each execution into the other system

• If the mirrors are valid executions, we have observational
equivalence (sound approximation)

• We represent executions using dependency graphs
F Computed via backwards constraint solving

13 / 73

Observational Equivalence: High-Level Overview

Dependency graphs and mirrors

Bidder picks A, observer compares to public value A

OutSys(B)

OutSys(B)

InEnv (B)

InEnv (A)

K (A)

InEnv (B) K (A)

OutEnv (true)

• Dependency graph mirror for bidder choice B is invalid
F Adversary choices stay fixed, comparison is with A

14 / 73

Observational Equivalence: High-Level Overview

Dependency graphs and mirrors

Bidder picks A, observer compares to public value A

OutSys(A)

OutSys(A)

InEnv (A)

InEnv (A)

K (A)

InEnv (A) K (A)

OutEnv (true)

• Dependency graph mirror for bidder choice B is invalid
F Adversary choices stay fixed, comparison is with A

14 / 73

Observational Equivalence: High-Level Overview

Dependency graphs and mirrors

Bidder picks B, observer compares to public value A

OutSys(B)

OutSys(A)

InEnv (A)

InEnv (A)

K (A)

InEnv (A) K (A)

OutEnv (true)

• Dependency graph mirror for bidder choice B is invalid
F Adversary choices stay fixed, comparison is with A

14 / 73

Observational Equivalence: High-Level Overview

Dependency graphs and mirrors

Bidder picks B, observer compares to public value A

OutSys(B)

OutSys(B)

InEnv (A)

InEnv (A)

K (A)

InEnv (A) K (A)

OutEnv (true)

• Dependency graph mirror for bidder choice B is invalid
F Adversary choices stay fixed, comparison is with A

14 / 73

Observational Equivalence: High-Level Overview

Dependency graphs and mirrors

Bidder picks B, observer compares to public value A

OutSys(B)

OutSys(B)

InEnv (B)

InEnv (A)

K (A)

InEnv (A) K (A)

OutEnv (true)

• Dependency graph mirror for bidder choice B is invalid
F Adversary choices stay fixed, comparison is with A

14 / 73

Observational Equivalence: High-Level Overview

Dependency graphs and mirrors

Bidder picks B, observer compares to public value A

OutSys(B)

OutSys(B)

InEnv (B)

InEnv (A)

K (A)

InEnv (B) K (A)

OutEnv (true)

• Dependency graph mirror for bidder choice B is invalid
F Adversary choices stay fixed, comparison is with A

14 / 73

Observational Equivalence: High-Level Overview

Dependency graphs and mirrors

Bidder picks B, observer compares to public value A

OutSys(B)

OutSys(B)

InEnv (B)

InEnv (A)

K (A)

InEnv (B) K (A)

OutEnv (true)

• Dependency graph mirror for bidder choice B is invalid
F Adversary choices stay fixed, comparison is with A

14 / 73

Observational Equivalence: High-Level Overview

Dependency graphs and mirrors

Bidder picks B, observer compares to public value A

OutSys(B)

OutSys(B)

InEnv (B)

InEnv (A)

K (A)

InEnv (B) K (A)

OutEnv (true)

• Dependency graph mirror for bidder choice B is invalid
F Adversary choices stay fixed, comparison is with A

14 / 73

Observational Equivalence: High-Level Overview

Invalid mirrors and attacks

Bidder picks A/B, observer compares to public value A

OutSys(A)

OutSys(A)

InEnv (A)

InEnv (A)

K (A)

InEnv (A) K (A)

OutEnv (true)

OutSys(B)

OutSys(B)

InEnv (B)

InEnv (A)

K (A)

InEnv (B) K (A)

OutEnv (true)

• Counter example to observational equivalence of the given systems

15 / 73

Observational Equivalence: High-Level Overview

Invalid mirrors and attacks

Bidder picks A/B, observer compares to public value A

OutSys(A)

OutSys(A)

InEnv (A)

InEnv (A)

K (A)

InEnv (A) K (A)

OutEnv (true)

OutSys(B)

OutSys(B)

InEnv (B)

InEnv (A)

K (A)

InEnv (B) K (A)

OutEnv (true)

• Counter example to observational equivalence of the given systems

15 / 73

Observational Equivalence: High-Level Overview

Invalid mirrors and attacks

Bidder picks A/B, observer compares to public value A

OutSys(A)

OutSys(A)

InEnv (A)

InEnv (A)

K (A)

InEnv (A) K (A)

OutEnv (true)

OutSys(B)

OutSys(B)

InEnv (B)

InEnv (A)

K (A)

InEnv (B) K (A)

OutEnv (true)

• Counter example to observational equivalence of the given systems

15 / 73

Observational Equivalence: High-Level Overview

Valid mirror

Observer compares system output to itself

OutSys(A)

OutSys(A)

InEnv (A)

InEnv (A)

K (A)

InEnv (A) K (A)

OutEnv (true)

OutSys(B)

OutSys(B)

InEnv (B)

InEnv (B)

K (B)

InEnv (B) K (B)

OutEnv (true)

• All mirrors need to be valid for observational equivalence

16 / 73

Observational Equivalence: High-Level Overview

Valid mirror

Observer compares system output to itself

OutSys(A)

OutSys(A)

InEnv (A)

InEnv (A)

K (A)

InEnv (A) K (A)

OutEnv (true)

OutSys(B)

OutSys(B)

InEnv (B)

InEnv (B)

K (B)

InEnv (B) K (B)

OutEnv (true)

• All mirrors need to be valid for observational equivalence

16 / 73

Observational Equivalence: High-Level Overview

Dependency graph equivalence

A diff-system is dependency graph equivalent if mirrors of all
dependency graphs rooted in any rule on both sides are valid.

• Sound but incomplete approximation
• Efficient and sufficient in practice

Input:
• Protocol specification
• Property: equivalence given two choices for some term(s)

F Example: random value vs expected value

Output:
• Yes, observational equivalent
• No, dependency graph with invalid mirror
• Non-termination possible

17 / 73

Observational Equivalence: High-Level Overview

Dependency graph equivalence

A diff-system is dependency graph equivalent if mirrors of all
dependency graphs rooted in any rule on both sides are valid.

• Sound but incomplete approximation
• Efficient and sufficient in practice

Input:
• Protocol specification
• Property: equivalence given two choices for some term(s)

F Example: random value vs expected value

Output:
• Yes, observational equivalent
• No, dependency graph with invalid mirror
• Non-termination possible

17 / 73

Observational Equivalence: High-Level Overview

Dependency graph equivalence

A diff-system is dependency graph equivalent if mirrors of all
dependency graphs rooted in any rule on both sides are valid.

• Sound but incomplete approximation
• Efficient and sufficient in practice

Input:
• Protocol specification
• Property: equivalence given two choices for some term(s)

F Example: random value vs expected value

Output:
• Yes, observational equivalent
• No, dependency graph with invalid mirror
• Non-termination possible

17 / 73

Observational Equivalence: High-Level Overview

Tamarin advantages

Approach implemented in the Tamarin tool:

• Tamarin supports verification with:
F equational theories (DH), induction, loops, mutable state

• Security protocol model is based on rewriting

• Restricted FOL for security properties

• Equational theories modeling algebraic properties

• Constraint-solving algorithm for analysis of unbounded number of
sessions

• Performance good despite undecidability

18 / 73

Observational Equivalence: High-Level Overview

Tamarin extension for observational equivalence

Implemented algorithm:

• Extended constraint solving

• (Normal) dependency graphs
F Important for state space reduction and termination

• Equivalence of dependency graphs by mirroring

19 / 73

Observational Equivalence: High-Level Overview

Some Simple Examples

• Indistinguishability of probabilistic encryption
F Adversary cannot distinguish random value from encryption
F Automatically verified in 0.2 seconds

• Decisional Diffie-Hellman
F Given algebraic properties of DH exponentiation as equational theory
F Adversary cannot distinguish gab from random gc

I Given ga and gb

F Automatically verified in 15.2 seconds

20 / 73

Observational Equivalence: High-Level Overview

Case studies

• Feldhofer’s RFID protocol
F Adversary cannot determine which RFID tag is communicating with

reader
F Automatically verified in 1.6 seconds

• Signed Diffie-Hellman key exchange
F Real-or-random secrecy of session key
F Needs manual guidance in one subcase
F Automatically completed proof in 2.5 minutes

• TPM Envelope
F Real-or-random secrecy
F Finds attack for deterministic encryption

I Despite previous proof wrt trace-based secrecy

F We recommend to use probabilistic encryption

21 / 73

Observational Equivalence: High-Level Overview

Future Work

• Implement more precise approximation
F Currently rules must match 1–1 due to mirroring
F General definition does allow matching using different, even multiple,

rules

• Protocols with loops: need induction

• Further case studies
F Signed Diffie-Hellman with Perfect Forward Secrecy
F NAXOS, authenticated key exchange with PFS

22 / 73

Observational Equivalence: High-Level Overview

Related Work
APTE AKISS ProVerif ProVerifDH SPEC Maude-NPA Tamarin Extension

Unbounded sessions x x x x x
Mutable state x x x ? x x
Diffie-Hellman x x x x x x x
Definable crypto x x x x x x x
Verification x x x x x x x x
Obs. equiv. x x x x / x

• APTE, AKISS
F Limited to bounded number of sessions

• ProVerif
F No mutable state support
F DH support only without observational equivalence

• SPEC
F Fixed crypto primitives, bounded number of sessions

• StatVerif, SAPIC
F Support mutable state, but no observational equivalence

• Maude-NPA
F Creates synchronous product of two similar protocols
F Suffers from termination issues - only finds attacks

23 / 73

Observational Equivalence: High-Level Overview

Summary

• Extended multiset rewriting approach to observational equivalence

• Result is well-suited for cryptographic protocol analysis

• Shown algorithm’s effectiveness and scope on case studies

• High degree of automation

24 / 73

Observational Equivalence Details

Outline

1 Observational Equivalence: High-Level Overview

2 Observational Equivalence Details

3 Case Studies

25 / 73

Observational Equivalence Details

Modeling

Define functions one(·) and two(·), and a fact symbol M.

Env = { Enull : −−[]→M(null),
Eone : M(x)−−[]→M(one(x)),
Etwo : M(x)−−[]→M(two(x)),
Echeck : M(x), InEnv (x)−−[]→OutEnv (true) }

Using the final rule, Echeck , the system can compare a constructed term
with the value stored in the InEnv (·) fact.

26 / 73

Observational Equivalence Details

Modeling Example

Each fact is associated with a recipe of its derivation
• Order the premises and conclusions of a rule: id : l−−[a]→r as

seq≤(l) and seq≤(r)

• For fact F ∈ r , where k is the index of F in seq≤(r) we get

recipe(F) = idk (newvars(F), [recipe(l1), . . . , recipe(ln)])

• Abusing notation, for a rule with name id we get:

recipe(id) = id([newvars(r1), . . . ,newvars(rm)],
[recipe(l1), . . . , recipe(ln)]),

27 / 73

Observational Equivalence Details

Semantics

The semantics of a set of multiset rewrite rules P are given by a labeled
transition relation→P ⊆ G] × (G] × ρ)× G], defined by the transition rule:

ri = id : l−−[a]→r ∈E ginsts(P) lfacts(l) ⊆] S pfacts(l) ⊆ S

S
set(a)−−−−−→

recipe(id)
P ((S \] lfacts(l)) ∪] mset(r))

28 / 73

Observational Equivalence Details

Example: Pairs
Two systems, where the first system outputs a pair of identical values

SA = { A : −−[]→OutSys((x , x)) }

and the second system may output two different values

SB = { B : −−[]→OutSys((x , y)) } .

In SA, we have that

∅ −−−−−−−→
A([{m/x}],[])

{OutSys((m,m))} .

In SB, we can either take a similar transition

∅ −−−−−−−−−→
B([{m/x,m/y}],[])

{OutSys((m,m))}

or alternatively

∅ −−−−−−−−−→
B([{m/x,n/y}],[])

{OutSys((m,n))} .

29 / 73

Observational Equivalence Details

Example: Pairs
Two systems, where the first system outputs a pair of identical values

SA = { A : −−[]→OutSys((x , x)) }

and the second system may output two different values

SB = { B : −−[]→OutSys((x , y)) } .

In SA, we have that

∅ −−−−−−−→
A([{m/x}],[])

{OutSys((m,m))} .

In SB, we can either take a similar transition

∅ −−−−−−−−−→
B([{m/x,m/y}],[])

{OutSys((m,m))}

or alternatively

∅ −−−−−−−−−→
B([{m/x,n/y}],[])

{OutSys((m,n))} .

29 / 73

Observational Equivalence Details

Example: Pairs
Two systems, where the first system outputs a pair of identical values

SA = { A : −−[]→OutSys((x , x)) }

and the second system may output two different values

SB = { B : −−[]→OutSys((x , y)) } .

In SA, we have that

∅ −−−−−−−→
A([{m/x}],[])

{OutSys((m,m))} .

In SB, we can either take a similar transition

∅ −−−−−−−−−→
B([{m/x,m/y}],[])

{OutSys((m,m))}

or alternatively

∅ −−−−−−−−−→
B([{m/x,n/y}],[])

{OutSys((m,n))} .

29 / 73

Observational Equivalence Details

Example: Pairs
Two systems, where the first system outputs a pair of identical values

SA = { A : −−[]→OutSys((x , x)) }

and the second system may output two different values

SB = { B : −−[]→OutSys((x , y)) } .

In SA, we have that

∅ −−−−−−−→
A([{m/x}],[])

{OutSys((m,m))} .

In SB, we can either take a similar transition

∅ −−−−−−−−−→
B([{m/x,m/y}],[])

{OutSys((m,m))}

or alternatively

∅ −−−−−−−−−→
B([{m/x,n/y}],[])

{OutSys((m,n))} .

29 / 73

Observational Equivalence Details

System Model

30 / 73

Observational Equivalence Details

Interface rules

OUT = {OUT : OutSys(M)−−[O]→InEnv (M)}
IN = {IN : OutEnv (M)−−[I]→InSys(M)}
IF = OUT ∪ IN

31 / 73

Observational Equivalence Details

Special recipe for InEnv

• Environment is not supposed to see the internal system choices.
• Reflected by defining recipe of InEnv (M) fact differently:

recipe(InEnv (M)) = OUT1([], x)

where x is a new variable.
• The recipe associated to the rule is: recipe(OUT) = OUT([], x).
• Replaces the OutSys(M) fact’s recipe with a variable, as the recipe is

considered internal to the system.

32 / 73

Observational Equivalence Details

Pairs and recipes

Env = { C : InEnv (x , x)−−[]→OutEnv (true) } .

Then in SA ∪ IF ∪ Env we have

∅ −−−−−−−→
A([{m/x}],[])

{OutSys((m,m))}
O−−−−−→

OUT([],z)
{InEnv ((m,m))}

−−−−−−−−−−→
C([],[OUT1([],z)])

{OutEnv (true)} .

In SB ∪ IF ∪ Env similarly:

∅ −−−−−−−−−→
B([{m/x,m/y}],[])

{OutSys((m,m))}
O−−−−−→

OUT([],z)
{InEnv ((m,m))}

−−−−−−−−−−→
C([],[OUT1([],z)])

{OutEnv (true)} .

To adversary these look the same.
33 / 73

Observational Equivalence Details

Pairs and recipes

However, in SB ∪ IF ∪ Env we also have the following transitions:

∅ −−−−−−−−−→
B([{m/x,n/y}],[])

{OutSys((m,n))}
O−−−−−→

OUT([],z)
{InEnv ((m,n))} .

Note that the first transition has a different recipe as we instantiate y
differently, but again the output replaces this recipe with a new variable z,
which is the same on both sides.
The two system will turn out to be not observational equivalent shortly.

34 / 73

Observational Equivalence Details

High-level definition

SA and SB are observational equivalent wrt interface and environment,
given empty initial states of the relation:
• Interface and environment rules must make the same choices on

both sides, with same recipe.
• Application of system rules SA (resp. SB) must be matchable by

some number of system rule applications of SB (resp. SA), with some
recipes, and end in states in the relation.

35 / 73

Observational Equivalence Details

Observational equivalence - definition

Two sets of multiset rewrite rules SA and SB are observational equivalent
with respect to an environment Env (and interface IF) if there is a relation
between the initial states in SA ∪ IF ∪Env (left system) and SB ∪ IF ∪Env
(right system), and for all pairs of states in that relation:

• If the left system can make a move with an environment or interface
rule, the right system can match it precisely

F Resulting states are in the relation
• If the left system can make a move with an SA rule, the right system

can match it, possibly using multiple steps
F resulting states are in the relation

The same holds in the other direction.

36 / 73

Observational Equivalence Details

Algorithm

1: function VERIFY(S)
2: RU ← L(S) ∪ R(S) ∪ IF ∪ Env

3: while RU 6= ∅ do
4: choose r ∈ RU, RU ← (RU \ {r})
5: compute DG←dgraphs(r) by constraint solving
6: if ∃dg∈DG s.t.mirrors(dg) lacks ground instances
7: then return “potential attack found: ”, dg
8: return “verification successful”

37 / 73

Observational Equivalence Details

Algorithm

1: function VERIFY(S)
2: RU ← L(S) ∪ R(S) ∪ IF ∪ Env
3: while RU 6= ∅ do
4: choose r ∈ RU, RU ← (RU \ {r})

5: compute DG←dgraphs(r) by constraint solving
6: if ∃dg∈DG s.t.mirrors(dg) lacks ground instances
7: then return “potential attack found: ”, dg
8: return “verification successful”

37 / 73

Observational Equivalence Details

Algorithm

1: function VERIFY(S)
2: RU ← L(S) ∪ R(S) ∪ IF ∪ Env
3: while RU 6= ∅ do
4: choose r ∈ RU, RU ← (RU \ {r})
5: compute DG←dgraphs(r) by constraint solving

6: if ∃dg∈DG s.t.mirrors(dg) lacks ground instances
7: then return “potential attack found: ”, dg
8: return “verification successful”

37 / 73

Observational Equivalence Details

Algorithm

1: function VERIFY(S)
2: RU ← L(S) ∪ R(S) ∪ IF ∪ Env
3: while RU 6= ∅ do
4: choose r ∈ RU, RU ← (RU \ {r})
5: compute DG←dgraphs(r) by constraint solving
6: if ∃dg∈DG s.t.mirrors(dg) lacks ground instances
7: then return “potential attack found: ”, dg

8: return “verification successful”

37 / 73

Observational Equivalence Details

Algorithm

1: function VERIFY(S)
2: RU ← L(S) ∪ R(S) ∪ IF ∪ Env
3: while RU 6= ∅ do
4: choose r ∈ RU, RU ← (RU \ {r})
5: compute DG←dgraphs(r) by constraint solving
6: if ∃dg∈DG s.t.mirrors(dg) lacks ground instances
7: then return “potential attack found: ”, dg
8: return “verification successful”

37 / 73

Observational Equivalence Details

Example: Pairs

In SB ∪ IF ∪ Env we have

∅ −−−−−−−−−→
B([{m/x,n/y}],[])

{OutSys((m,n))}
O−−−−−→

OUT([],z)
{InEnv ((m,n))} .

The only way for SA ∪ IF ∪ Env to simulate this would be

∅ −−−−−−−→
A([{m/x}],[])

{OutSys((m,m))}
O−−−−−→

OUT([],z)
{InEnv ((m,m))} .

and further rule A transitions, which add more OutSys((m,m)) to S.
Output rule can only be used once, so just one InEnv ((m,m)) in S. Then

S −−−−−−−−−−→
C([],[OUT1([],z)])

{OutEnv (true)},

but in state {InEnv ((m,n))} no such transition is possible, so SA 6≈Env SB.

38 / 73

Observational Equivalence Details

Example result

The previous example showed that if a rule is applicable by the
environment on one side, and not on the other, the two sides are
distinguishable. Thus the two systems are not observationally equivalent.

Next we see an example where the recipe used by the environment is
crucial for distinction.

39 / 73

Observational Equivalence Details

Example: different Environment

SA = { A : −−[]→OutSys((x , x)) }

SB = { B : −−[]→OutSys((x , y)) }

Environment Env ′ with persistent M(·):

Env ′ = { Efst : InEnv ((x , y))−−[]→M(x),
Esnd : InEnv ((x , y))−−[]→M(y),
Ecmp : M(x),M(x)−−[]→OutEnv (true) },

We expect this environment to be able to distinguish SA and SB, but need
to reason differently than before.

40 / 73

Observational Equivalence Details

Example continued

Let us start with SB ∪ IF ∪ Env ′:

∅ −−−−−−−−−→
B([{m/x,n/y}],[])

{OutSys((m,n))}
O−−−−−→

OUT([],z)
{InEnv ((m,n))}

−−−−−−−−−−−→
Efst ([],[OUT1([],z)])

{M(m)}

−−−−−−−−−−−−→
Esnd ([],[OUT1([],z)])

{M(m),M(n)} .

In SA ∪ IF ∪ Env ′ this can be simulated as follows:

∅ −−−−−−−→
A([{m/x}],[])

{OutSys((m,m))}
O−−−−−→

OUT([],z)
{InEnv ((m,m))}

−−−−−−−−−−−→
Efst ([],[OUT1([],z)])

{M(m)}

−−−−−−−−−−−−→
Esnd ([],[OUT1([],z)])

{M(m),M(m)} .

41 / 73

Observational Equivalence Details

Example continued
Moreover, we can compare the first and second value of the tuple with

{M(m),M(m)} −→
r1
{M(m),M(m),OutEnv (true)} ,

where

r1 = Ecmp([], [Efst,1([], [OUT1([], z)]),Esnd,1([], [OUT1([], z)])])

This transition cannot be matched by SB ∪ IF ∪ Env ′. Note however that
the following transition is possible for SB ∪ IF ∪ Env ′:

{M(m),M(n)} −→
r2
{M(m),M(n),OutEnv (true)} ,

where

r2 = Ecmp([], [Efst,1([], [OUT1([], z)]),Efst,1([], [OUT1([], z)])]) .

The recipes are crucial, as otherwise we could compare the first value
with itself and it would seem these are observationally equivalent.

42 / 73

Observational Equivalence Details

Example: coin returning vending machine

Now we add equational reasoning to the mix. We use 1 e and 2 e coins.
Represent these by functions one and two, with constant null . How to
return 3 e?

Which coins and which order?
Specification:

SA = { A : −−[]→OutSys(two(one(null))) }.

Implementation:

SB = { B1 : −−[]→OutSys(two(one(null))),
B2 : −−[]→OutSys(one(one(one(null)))),
B3 : −−[]→OutSys(one(two(null))) } .

43 / 73

Observational Equivalence Details

Example: coin returning vending machine

Now we add equational reasoning to the mix. We use 1 e and 2 e coins.
Represent these by functions one and two, with constant null . How to
return 3 e? Which coins and which order?

Specification:

SA = { A : −−[]→OutSys(two(one(null))) }.

Implementation:

SB = { B1 : −−[]→OutSys(two(one(null))),
B2 : −−[]→OutSys(one(one(one(null)))),
B3 : −−[]→OutSys(one(two(null))) } .

43 / 73

Observational Equivalence Details

Example: coin returning vending machine

Now we add equational reasoning to the mix. We use 1 e and 2 e coins.
Represent these by functions one and two, with constant null . How to
return 3 e? Which coins and which order?
Specification:

SA = { A : −−[]→OutSys(two(one(null))) }.

Implementation:

SB = { B1 : −−[]→OutSys(two(one(null))),
B2 : −−[]→OutSys(one(one(one(null)))),
B3 : −−[]→OutSys(one(two(null))) } .

43 / 73

Observational Equivalence Details

Example: coin returning vending machine

Now we add equational reasoning to the mix. We use 1 e and 2 e coins.
Represent these by functions one and two, with constant null . How to
return 3 e? Which coins and which order?
Specification:

SA = { A : −−[]→OutSys(two(one(null))) }.

Implementation:

SB = { B1 : −−[]→OutSys(two(one(null))),
B2 : −−[]→OutSys(one(one(one(null)))),
B3 : −−[]→OutSys(one(two(null))) } .

43 / 73

Observational Equivalence Details

Example: coin value

Environment to check coin value:

Env = { Enull : −−[]→M(null),
Eone : M(x)−−[]→M(one(x)),
Etwo : M(x)−−[]→M(two(x)),
Echeck : M(x), InEnv (x)−−[]→OutEnv (true) } .

This environment will distinguish based on the exact order of coins.

We only want to check that the same value is returned.

Add the equation two(x) = one(one(x)). Then the specification and
implementation are observationally equivalent for the given environment.

44 / 73

Observational Equivalence Details

Example: coin value

Environment to check coin value:

Env = { Enull : −−[]→M(null),
Eone : M(x)−−[]→M(one(x)),
Etwo : M(x)−−[]→M(two(x)),
Echeck : M(x), InEnv (x)−−[]→OutEnv (true) } .

This environment will distinguish based on the exact order of coins.

We only want to check that the same value is returned.

Add the equation two(x) = one(one(x)). Then the specification and
implementation are observationally equivalent for the given environment.

44 / 73

Observational Equivalence Details

Example: coin value

Environment to check coin value:

Env = { Enull : −−[]→M(null),
Eone : M(x)−−[]→M(one(x)),
Etwo : M(x)−−[]→M(two(x)),
Echeck : M(x), InEnv (x)−−[]→OutEnv (true) } .

This environment will distinguish based on the exact order of coins.

We only want to check that the same value is returned.

Add the equation two(x) = one(one(x)). Then the specification and
implementation are observationally equivalent for the given environment.

44 / 73

Observational Equivalence Details

Example: coin value

Environment to check coin value:

Env = { Enull : −−[]→M(null),
Eone : M(x)−−[]→M(one(x)),
Etwo : M(x)−−[]→M(two(x)),
Echeck : M(x), InEnv (x)−−[]→OutEnv (true) } .

This environment will distinguish based on the exact order of coins.

We only want to check that the same value is returned.

Add the equation two(x) = one(one(x)). Then the specification and
implementation are observationally equivalent for the given environment.

44 / 73

Observational Equivalence Details

How to prove ObsEq: Bi-Systems

• Requiring the tool to guess which rule on one side is simulated by
what rule on the other is difficult
• Instead use diff-terms and thus same-format rules
• Additionally we require that each rule is simulated by itself
• This is sufficient to prove ObsEq, but not necessary

45 / 73

Observational Equivalence Details

What is covered?

• Real-or-random test
• Privacy properties of voting and auctions
• Ciphertext indistinguishability
• Authenticated key-exchange
• All previous example in this lecture

46 / 73

Observational Equivalence Details

Bi-System yields two systems

For bi-system S we get
• Left instance L(S)

• Right instance R(S)

where for all terms diff[M,N] we get M in L(S) and N in R(S).

47 / 73

Observational Equivalence Details

Example: pairs again

Single bi-system S combines SA and SB as

S = { AB : −−[]→OutSys((x ,diff[x , y])) },

where L(S) = SA and R(S) = SB.

48 / 73

Observational Equivalence Details

Example: coins again

S = { AB1 : −−[]→OutSys(diff[two(one(null)),
two(one(null))]),

AB2 : −−[]→OutSys(diff[two(one(null)),
one(one(one(null)))]),

AB3 : −−[]→OutSys(diff[two(one(null)),
one(two(null))])}.

Keeping the environment Env from earlier results in the bi-system S not
satisfying observational equivalence.

If we add the equation two(x) = one(one(x)), then S satisfies
observational equivalence.

49 / 73

Observational Equivalence Details

Example: coins again

S = { AB1 : −−[]→OutSys(diff[two(one(null)),
two(one(null))]),

AB2 : −−[]→OutSys(diff[two(one(null)),
one(one(one(null)))]),

AB3 : −−[]→OutSys(diff[two(one(null)),
one(two(null))])}.

Keeping the environment Env from earlier results in the bi-system S not
satisfying observational equivalence.

If we add the equation two(x) = one(one(x)), then S satisfies
observational equivalence.

49 / 73

Observational Equivalence Details

Example: coins again

S = { AB1 : −−[]→OutSys(diff[two(one(null)),
two(one(null))]),

AB2 : −−[]→OutSys(diff[two(one(null)),
one(one(one(null)))]),

AB3 : −−[]→OutSys(diff[two(one(null)),
one(two(null))])}.

Keeping the environment Env from earlier results in the bi-system S not
satisfying observational equivalence.

If we add the equation two(x) = one(one(x)), then S satisfies
observational equivalence.

49 / 73

Observational Equivalence Details

Dependency Graphs

• To simplify reasoning, our algorithm works with dependency graphs
rather than with the labeled transition system.
• Dependency graphs are a data structure that formalize the entire

structure of a system execution, including which facts originate from
which rules, similar to recipes.
• They are well-suited for automated analysis using constraint solving,

as they cover whole system state.
• Dependency graphs naturally give rise to an equivalence relation

that implies observational equivalence; however, it is substantially
simpler to verify.

50 / 73

Observational Equivalence Details

Dependency graph example for pairs

A:O
OutSys((m,m))

Out : O
OutSys((m,m))

InEnv ((m,m))

Efst :
InEnv ((m,m))

M(m)
Esnd :

InEnv ((m,m))

M(m)

Ecmp :
M(m) M(m)

OutEnv (true)

51 / 73

Observational Equivalence Details

Dependency graph example for coins

Enull : M(null)

Eone :
M(null)

M(one(null))

Etwo :
M(one(null))

M(two(one(null)))

A: O
OutSys(two(one(null)))

Out : O
OutSys(two(one(null)))

InEnv (two(one(null)))

Echeck :
M(two(one(null))) InEnv (two(one(null)))

OutEnv (true)

52 / 73

Observational Equivalence Details

Mirroring dependency graphs

• mirrors of dependency graphs: mirrors contain all dependency
graphs on the other side of the bi-system with the same structure,

F the same edges
F where the nodes are instances (potentially different due to the

diff-terms) of the same rules.

• If the set of mirrors contains all “necessary instances” (for new diff
variables), each transition is enabled on the other side as well.
• This guarantees observational equivalence.

• Mirroring DG are sufficient, but not necessary for observational
equivalence, see Theorem 1.

53 / 73

Observational Equivalence Details

Mirroring dependency graphs

• mirrors of dependency graphs: mirrors contain all dependency
graphs on the other side of the bi-system with the same structure,

F the same edges
F where the nodes are instances (potentially different due to the

diff-terms) of the same rules.

• If the set of mirrors contains all “necessary instances” (for new diff
variables), each transition is enabled on the other side as well.
• This guarantees observational equivalence.
• Mirroring DG are sufficient, but not necessary for observational

equivalence, see Theorem 1.

53 / 73

Observational Equivalence Details

Reminder: Algorithm

1: function VERIFY(S)
2: RU ← L(S) ∪ R(S) ∪ IF ∪ Env
3: while RU 6= ∅ do
4: choose r ∈ RU, RU ← (RU \ {r})
5: compute DG←dgraphs(r) by constraint solving
6: if ∃dg∈DG s.t.mirrors(dg) lacks ground instances
7: then return “potential attack found: ”, dg
8: return “verification successful”

54 / 73

Observational Equivalence Details

Implementation

Execution trace of

S0, (l1
a1−−→

rec1
r1),S1, . . . ,Sk−1, (lk

ak−−→
reck

rk),Sk

is the sequence of the multisets of its action labels [a1, . . . ,ak] .

The adversary’s message deduction capabilities are captured by the
following set of rules.

MD = { Out(t)−−[]→K(t), K(t)−−[K(t)]→In(t),
Fr(x : fr)−−[]→K(x : fr), []−−[]→K(x : pub) }

∪ { K(t1), . . . ,K(tn)−−[]→K(f (t1, . . . , tn)) | f ∈ Σn
Fun }

55 / 73

Observational Equivalence Details

Implementation

Execution trace of

S0, (l1
a1−−→

rec1
r1),S1, . . . ,Sk−1, (lk

ak−−→
reck

rk),Sk

is the sequence of the multisets of its action labels [a1, . . . ,ak] .

The adversary’s message deduction capabilities are captured by the
following set of rules.

MD = { Out(t)−−[]→K(t), K(t)−−[K(t)]→In(t),
Fr(x : fr)−−[]→K(x : fr), []−−[]→K(x : pub) }

∪ { K(t1), . . . ,K(tn)−−[]→K(f (t1, . . . , tn)) | f ∈ Σn
Fun }

55 / 73

Observational Equivalence Details

Implementation

Added new message deduction rule:

IEquality : K↓(x),K↑(x)−−[]→ .

Compare different sources of x .

• If a side can construct the same value twice this rule is applicable
• If the same source is used twice, the other side can trivially mirror it
• But, if one side can decrypt a value and compare it, but the other

cannot, this will be exposed.

56 / 73

Observational Equivalence Details

Implementation

Added new message deduction rule:

IEquality : K↓(x),K↑(x)−−[]→ .

Compare different sources of x .

• If a side can construct the same value twice this rule is applicable
• If the same source is used twice, the other side can trivially mirror it
• But, if one side can decrypt a value and compare it, but the other

cannot, this will be exposed.

56 / 73

Observational Equivalence Details

Implementation

Added new message deduction rule:

IEquality : K↓(x),K↑(x)−−[]→ .

Compare different sources of x .

• If a side can construct the same value twice this rule is applicable
• If the same source is used twice, the other side can trivially mirror it
• But, if one side can decrypt a value and compare it, but the other

cannot, this will be exposed.

56 / 73

Case Studies

Outline

1 Observational Equivalence: High-Level Overview

2 Observational Equivalence Details

3 Case Studies

57 / 73

Case Studies

Case studies

• Probabilistic encryption - next
• DDH - see theory file and paper (if time permits)

• TPM Envelope - find attack in lab
• Signed Diffie-Hellman - analyze in lab

58 / 73

Case Studies

Case studies

• Probabilistic encryption - next
• DDH - see theory file and paper (if time permits)
• TPM Envelope - find attack in lab
• Signed Diffie-Hellman - analyze in lab

58 / 73

Case Studies

Probabilistic encryption

Equational theory:

pdec(penc(m,pk(k), r), k) ' m .

This equation gives rise to the following decryption rule for probabilistic
encryption for the adversary, which is automatically generated by
TAMARIN:

Dpenc : K(penc(m,pk(k), r)),K(k)−−[]→K(m) .

59 / 73

Case Studies

Probabilistic encryption (ctd.)

We now express, as a bi-system, that a probabilistic encryption cannot be
distinguished from a random value:

S = { GEN : Fr(k)−−[]→Key(k),Out(pk(k))
ENC : Key(k),Fr(r1),Fr(r2), In(x)−−[]→

Out(diff[r1,penc(x ,pk(k), r2)]) } .

60 / 73

Case Studies

Probabilistic encryption (ctd.)

We summarize below how TAMARIN automatically proves this property.
The algorithm VERIFY (line 2) first constructs the set RU of rules to be
analyzed,

RU = { L(GEN),R(GEN),L(ENC),R(ENC),
FRESHSys, FRESHEnv , IEquality ,Dpenc} ,

together with the remaining rules in IF and Env .

Algorithm VERIFY iterates over all rules (lines 3–4) until either an attack is
found (line 7) or all rules have been checked and the verification is
complete (line 8), which happens here.

61 / 73

Case Studies

Probabilistic encryption (ctd.)

VERIFY works like this:
• VERIFY first generates dependency graphs with the rule as the root

(line 5).
• For each resulting dependency graph, it looks for a mirror (line 6)

that contains all instances required by the definition of normal
dependency graph equivalence.
• It always finds a mirror and verification therefore succeeds.
• TAMARIN analyzes left-diff and right-diff instantiations independently,

we present them together.
• No explicit dependency graphs shown (run the tool to see those);

however, we do explain how they are mirrored in each case so that
the verification succeeds.

62 / 73

Case Studies

Probabilistic encryption (ctd.)

S = { GEN : Fr(k)−−[]→Key(k),Out(pk(k))
ENC : Key(k),Fr(r1),Fr(r2), In(x)−−[]→

Out(diff[r1,penc(x ,pk(k), r2)]) } .

• As rule GEN does not contain a diff-term, the left diff-instantiation of
this rule is identical to the right diff-instantiation.
• The rule has only a single fresh fact as its premise and thus any

dependency graph with this rule at its root contains only those two
rule instances and is trivially mirrored by itself.

63 / 73

Case Studies

Probabilistic encryption (ctd.)

S = { GEN : Fr(k)−−[]→Key(k),Out(pk(k))
ENC : Key(k),Fr(r1),Fr(r2), In(x)−−[]→

Out(diff[r1,penc(x ,pk(k), r2)]) } .

• The rule ENC has the same premises in the left- and right-hand side
system and is therefore identical for the purpose of dependency
graph computation with the ENC rule as root. (Note that outputs will
be considered using the equality rule below.)
• The two fresh premises will result in identical dependency graphs,

while the key and message reception input are independent.
• Hence both of them will have identical dependency graphs as

premises, and the resulting dependency graphs are identical (up to
the outputs) and therefore mirror each other.

64 / 73

Case Studies

Probabilistic encryption (ctd.)

The fresh rules FRESHSys and FRESHEnv have no premises. Hence the
dependency graphs with them as root are just their instances, which
mirror each other in the left- and right-hand system.

65 / 73

Case Studies

Probabilistic encryption (ctd.)

• For an equality rule instance of IEquality as the root of a dependency
graph, the two premises are the same instance of a variable x .
• If both of the premises are adversary generated, then the resulting

dependency graphs are the same in the left- and right-hand system,
and thus will mirror themselves trivially.

• Alternatively, if one of the premises uses the output of an instance of
either the ENC rule or the GEN rule, then there is no dependency
graph with a matching second premise.
• This is because all system outputs, pk(k) for GEN and r1 or

penc(x ,pk(k), r2) for ENC, contain a fresh value, k , r1, respectively
r2, that is never available to the intruder.
• As this will never allow a complete dependency graph to be derived,

no mirroring dependency graph is needed.

66 / 73

Case Studies

Probabilistic encryption (ctd.)

• For an equality rule instance of IEquality as the root of a dependency
graph, the two premises are the same instance of a variable x .
• If both of the premises are adversary generated, then the resulting

dependency graphs are the same in the left- and right-hand system,
and thus will mirror themselves trivially.

• Alternatively, if one of the premises uses the output of an instance of
either the ENC rule or the GEN rule, then there is no dependency
graph with a matching second premise.
• This is because all system outputs, pk(k) for GEN and r1 or

penc(x ,pk(k), r2) for ENC, contain a fresh value, k , r1, respectively
r2, that is never available to the intruder.
• As this will never allow a complete dependency graph to be derived,

no mirroring dependency graph is needed.

66 / 73

Case Studies

Probabilistic encryption (ctd.)

• For the decryption rule generated for the probabilistic encryption, this
rule is never applicable on either side as the adversary never
receives the keys needed for decrypting system generated
encryptions.
• As there is no dependency graph, no mirroring one is needed.

(One might mistakenly think that this rule might apply to
intruder-generated terms. However, this is not the case due to the
restrictions on how the adversary may combine its knowledge (K↓ vs K↑)
and, in any case, both sides would use the same dependency graphs as
premise, so the result would be the same.)

67 / 73

Case Studies

Probabilistic encryption (ctd.)

• For the decryption rule generated for the probabilistic encryption, this
rule is never applicable on either side as the adversary never
receives the keys needed for decrypting system generated
encryptions.
• As there is no dependency graph, no mirroring one is needed.

(One might mistakenly think that this rule might apply to
intruder-generated terms. However, this is not the case due to the
restrictions on how the adversary may combine its knowledge (K↓ vs K↑)
and, in any case, both sides would use the same dependency graphs as
premise, so the result would be the same.)

67 / 73

Case Studies

Probabilistic encryption (ctd.)

For all other adversary rules, it is obvious that they result in identical
dependency graphs on both sides.

More precisely:
• Construction rules have adversary knowledge input and thus the

same dependency graphs as premises.
• For the deconstruction rules, the only relevant one is the previous

decryption rule, as that is the only one that can use information
coming out of the system; all other rules can only be used on
adversary-generated terms and thus have the same dependency
graphs as premises.

68 / 73

Case Studies

Probabilistic encryption (ctd.)

This completes our summary of TAMARIN’s verification of observational
equivalence for this example. TAMARIN automatically constructs the proof
in under 0.2 seconds.

69 / 73

Case Studies

DDH

Demo if time permits

70 / 73

Case Studies

Simplified TPM Envelope specification

Init : Fr(aik)−−[]→PCR(′pcr0′),AIK(aik),Out(pk(aik))
Ext : PCR(x), In(y)−−[]→PCR(h(x , y))

CertK : AIK(aik),KT(lock , sk)−−[]→
Out(sign(〈′certk ′, lock ,pk(sk)〉,aik))

Quote : PCR(x),AIK(aik)−−[]→
PCR(x),Out(sign(〈′certcpr ′, x〉,aik))

Unbind : PCR(x),KT(x , sk), In(aenc(m,pk(sk)))−−[]→
PCR(x),Out(m)

A1 : Fr(n),PCR(x)−−[]→PCR(h(x ,n)),A1(n)
A2 : Fr(s),A1(n),AIK(aik),

In(sign(〈′certk ′,h(h(′pcr0′,n),′ obtain′),pk〉,aik))
−−[]→Out(aenc(s,pk)),A2(n, s),A2ror(s)

A3 : In(sign(〈′certpcr ′,h(h(′pcr0′,n),′ deny ′)〉,aik)),
A2(n, s),AIK(aik)−−[Denied(s)]→

CLKey : Fr(sk),PCR(x), In(lock)−−[]→
PCR(x),KT(h(x , lock), sk),Out(pk(sk))

ROR : A2ror(s),Fr(f)−−[]→Out(diff[s, f])

71 / 73

Case Studies

TPM Envelope attack

#i : iequality[DiffIntrEquality()]

Alice2(~n, ~s) !AIK(~aik) In(sign(<'certpcr', h(<h(<'pcr0', ~n>), 'deny'>)>, ~aik))

#k : Alice3[Denied(~s),
 DiffProtoAlice3()]

#vk : coerce[!KU(sign(<'certkey', h(<h(<'pcr0', ~n>), 'obtain'>), pk(~sk)>, ~aik)),
 DiffIntrCoerce()]

#vf.1 : isend

Alice1(~n) Fr(~s) !AIK(~aik)
In(sign(<'certkey', h(<h(<'pcr0', ~n>), 'obtain'>), pk(~sk)>,
 ~aik)
)

#vr : Alice2[Secret(~s),
 DiffProtoAlice2()]

Out(aenc(~s, pk(~sk))) Alice2(~n, ~s) Alice2reveal(~s)

Alice2reveal(~s) Fr(~f)

#vr.5 : Challenge[Challenge(~s),
 DiffProtoChallenge()]

Out(~s)

#vk.1 : caenc[!KU(aenc(~s, pk(~sk))),
 DiffIntrConstrcaenc()]

Fr(~n) PCR('pcr0') PCR_Write('pcr0')

#vr.1 : Alice1[PCR_Write(h(<'pcr0', ~n>)),
 DiffProtoAlice1()]

PCR(h(<'pcr0', ~n>)) PCR_Write(h(<'pcr0', ~n>)) Alice1(~n)

PCR(h(<'pcr0', ~n>)) Fr(~sk) In('obtain')

#vr.4 : CreateLockedKey[PCR_Read(h(<'pcr0', ~n>)),
 DiffProtoCreateLockedKey()]

PCR(h(<'pcr0', ~n>)) !KeyTable(h(<h(<'pcr0', ~n>), 'obtain'>), ~sk) Out(pk(~sk))

PCR_Write(h(<'pcr0', ~n>)) PCR(h(<'pcr0', ~n>)) In('deny')

#vr.7 : PCR_Extend[PCR_Write(h(<h(<'pcr0', ~n>), 'deny'>)),
 DiffProtoPCR_Extend()]

PCR(h(<h(<'pcr0', ~n>), 'deny'>)) PCR_Write(h(<h(<'pcr0', ~n>), 'deny'>))

#vk.2 : coerce[!KU(~s),
 DiffIntrCoerce()]

Fr(~aik)

#vr.2 : PCR_Init[PCR_Init(),
 PCR_Write('pcr0'),
 DiffProtoPCR_Init()]

PCR('pcr0') PCR_Write('pcr0') !AIK(~aik) Out(pk(~aik))

!AIK(~aik) !KeyTable(h(<h(<'pcr0', ~n>), 'obtain'>), ~sk)

#vr.3 : PCR_CertKey[DiffProtoPCR_CertKey()]

Out(sign(<'certkey', h(<h(<'pcr0', ~n>), 'obtain'>), pk(~sk)>, ~aik))

PCR(h(<h(<'pcr0', ~n>), 'deny'>)) !AIK(~aik)

#vr.6 : PCR_Quote[PCR_Read(h(<h(<'pcr0', ~n>), 'deny'>)),
 DiffProtoPCR_Quote()]

Out(sign(<'certpcr', h(<h(<'pcr0', ~n>), 'deny'>)>,
 ~aik)
)

PCR(h(<h(<'pcr0', ~n>), 'deny'
 >)
)

#vk.3 : coerce[!KU(pk(~sk)),
 DiffIntrCoerce()]

#vk.4 : pub[!KU('obtain'),
 DiffIntrPubConstr()]

#vf.5 : isend

#vk.5 : coerce[!KU(sign(<'certpcr', h(<h(<'pcr0', ~n>), 'deny'>)>, ~aik)),
 DiffIntrCoerce()]

#vf.7 : isend

#vk.6 : pub[!KU('deny'),
 DiffIntrPubConstr()]

#vf.8 : isend

72 / 73

Case Studies

Conclusions

• Observational equivalence can be automatically proven
• Diff-terms allow concise description
• Approach is sound (mirroring DG are sufficient, not necessary)
• Compares well to other approaches

(-: Happy Proving :-)

73 / 73

Case Studies

Conclusions

• Observational equivalence can be automatically proven
• Diff-terms allow concise description
• Approach is sound (mirroring DG are sufficient, not necessary)
• Compares well to other approaches

(-: Happy Proving :-)

73 / 73

	Observational Equivalence: High-Level Overview
	Observational Equivalence Details
	Case Studies

