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Term Rewriting

Motivation

Term Rewriting is

• a useful and flexible formalism in general.
F Programming languages
F Automated deduction
F Rewriting logic

• used for representing protocols formally in this course!
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Term Rewriting

Signature

Definition (Signature)

An unsorted signature Σ is a set of function symbols, each having an
arity n ≥ 0. We call function symbols of arity 0 constants.

Example (Peano notation for natural numbers)

Σ = {0, s,+}, where 0 is a constant, s has arity 1 and represents the
successor function, and + has arity 2 and represents addition. Note
that for binary operators we sometimes will use infix notation.
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Term Rewriting

Term Algebra

Definition (Term Algebra)

Let Σ be a signature, X a set of variables, and Σ ∩ X = ∅. We call
the set TΣ(X ) the term algebra over Σ. It is the least set such that:

• X ⊆ TΣ(X ).

• If t1, . . . , tn ∈ TΣ(X ) and f ∈ Σ with arity n, then
f (t1, . . . , tn) ∈ TΣ(X ).

The set of ground terms TΣ consists of terms built without variables,
i.e., TΣ := TΣ(∅).

Exercise: constants are included in TΣ and TΣ(X ).

Example (Peano notation for natural numbers (ctd.))

s(0) ∈ TΣ

s(s(0)) + s(X ) ∈ TΣ(X )
+s(0)+ /∈ TΣ(X )
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Term Rewriting

Equational Theory

Definition (Equation)

An equation is a pair of terms, written: t = t ′, and a set of equations
is called an equational theory (Σ,E ). An equation can be oriented as

t → t ′ ∈
→
E or as t ← t ′ ∈

←
E .

Equations are usually oriented from left to right for use in
simplification.

Example (Peano natural numbers (ctd.))

The equations E defining the Peano natural numbers are:
X + 0 = X
X + s(Y ) = s(X + Y )

Using
→
E on s(s(0)) + s(0) yields the equational derivation:

s(s(0)) + s(0) = s(s(s(0)) + 0) = s(s(s(0))).
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Term Rewriting

Cryptographic Messages

We generally denote variables with upper case names X ,Y , . . ., and
function symbols (including constants) with lower case names a, b, ...

Definition (Messages)
A message is a term in TΣ(X ), where
Σ = A ∪ F ∪ Func ∪ {pair , pk , aenc , senc}. We call

X the set of variables A, B, X , Y , Z , ...,
A the set of agents a, b, c , ...,
F the set of fresh values na, nb, k (nonces, keys, ...),
Func the set of user-defined functions (hash, exp, ...),
pair(t1, t2) pairing, also denoted by 〈t1, t2〉,
pk(t) public key,
aenc(t1, t2) asymmetric encryption, also denoted by {t1}t2 ,
senc(t1, t2) symmetric encryption, also denoted by {|t1|}t2 .
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Term Rewriting

Free Algebra

Definition (Free Algebra)

In the free algebra every term is interpreted by itself (syntactically).

Example (Equational theory for symmetric cryptography)

Σ = A ∪ F ∪ {senc , sdec}, with senc and sdec of arity 2.
(E : sdec(senc(M,K ),K ) = M)

• t1 =free t2 iff t1 =syntactic t2.

• a 6=free b for different constants a and b.

• For above example: sdec(senc(X ,Y ),Y ) 6=free X .

This is too coarse, as we obviously want to identify those two terms,
which means we will need to reason modulo equations.
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Term Rewriting

Algebraic Properties

Example (Equations E)

{{M}K}(K)−1 = M ((K )−1)−1 = K

{|{|M|}K |}K = M exp(exp(B,X ),Y ) = exp(exp(B,Y ),X )

Definition (Congruence, Equivalence, Quotient)

A set of equations E induces a congruence relation =E on terms and
thus the equivalence class [t]E of a term modulo E . The quotient
algebra TΣ(X )/=E

interprets each term by its equivalence class.

• Two terms are semantically equal iff that is a consequence of E .

• For the above example equations:
F a 6=E b for any distinct constants a and b
F If m1 6=E m2 then also h(m1) 6=E h(m2)
F {{M}(K)−1}K =E M
F {|{|M|}exp(exp(g ,Y ),X )|}exp(exp(g ,X ),Y ) =E M
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Term Rewriting

Substitution

Definition (Substitution)

A substitution σ is a function σ : X → TΣ(X ) where σ(x) 6= x for
finitely many x ∈ X .
We write substitutions in postfix notation and homomorphically
extend them to a mapping σ : TΣ(X )→ TΣ(X ) on terms:

f (t1, . . . , tn)σ = f (t1σ, . . . , tnσ)

Example (Applying a substitution)

Given substitution σ = {X 7→ senc(M,K )} and the term
t = sdec(X ,K ) we can apply the substitution and get
tσ = sdec(senc(M,K ),K ).
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Term Rewriting

Substitution (ctd.)

Definition (Substitution composition)

We denote with στ the composition of substitutions σ and τ , i.e.,
τ ◦ σ.

Example (Substitution composition)

For substitutions σ = [x 7→ f (y), y 7→ z ] and τ = [y 7→ a, z 7→ g(b)]
we have στ = [x 7→ f (a), y 7→ g(b), z 7→ g(b)].
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Term Rewriting

Position

Definition (Position)

A position p is a sequence of positive integers. The subterm t|p of a
term t at position p is obtained as follows.

• If p = [ ] is the empty sequence, then t|p = t.

• If p = [i ] · p′ for a positive integer i and a sequence p′, and
t = f (t1, . . . , tn) for f ∈ Σ and 1 ≤ i ≤ n then t|p = ti |p′ , else
t|p does not exist.

Example (Position in a term)

For the term t = sdec(senc(M,K ),K ) we have five subterms:
t|[ ] = t
t|[1] = senc(M,K )
t|[1,1] = M
t|[1,2] = K
t|[2] = K
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Term Rewriting

Graphical representation of positions in a term

Tree of subterms of sdec(senc(M,K )) and their positions.

sdec(senc(M,K ),K ) [ ]

[1] senc(M,K )

[1, 1] M K [1, 2]

K [2]
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Term Rewriting

Matching and Application

Definition (Matching)

A term t matches another term l if there is a subterm of t, i.e., t|p,
such that there is a substitution σ so that t|p = lσ. We call σ the
matching substitution.

Definition (Application of a rule)

A rule (oriented equation) l → r is applicable on a term t, when t
matches l .

The result of such a rule application is the term t[rσ]p, where σ is the
matching substitution.
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Term Rewriting

Unification

Definition (Unification)

We say that t
?
= t ′ is unifiable in (Σ,E ) for t, t ′ ∈ TΣ(X ), if there is a

substitution σ such that tσ =E t ′σ and we call σ a unifier.

For syntactic unification (E = ∅) there is a most general unifier for
two unifiable terms, and it is decidable whether they are unifiable.
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Term Rewriting

Unification modulo theories

• When considering other algebras, unifiability is in general
undecidable, e.g., associativity and distributivity.

• Even when decidable, there is in general no unique most general
unifier, e.g., {exp(X ,Y ), exp(X ′, c)} . . .

• Some unification problems are decidable but infinitary: in general,
there is an infinite set of most general unifiers, e.g., associativity.
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Term Rewriting

Equational Proofs

Definition (Equality Relation)

Given (Σ,E ), an E -equality step for u, v ∈ TΣ(X ) is defined as
u →(

→
E ∪

←
E ) v and denoted as u ↔E v .

The transitive-reflexive closure of ↔E is the E -equality relation =E .

Definition (Equality Proof)

A sequence of steps t0 ↔E t1 ↔E . . .↔E tn, witnessing n-step
equality of t0 ↔+

E tn is an equality proof.
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Term Rewriting

Equality for Peano natural numbers

Example (Equality reasoning for Peano natural numbers)

Consider how to prove s(s(0)) + s(0) = s(0) + s(s(0)):

s(s(0)) + s(0) = s(s(s(0)) + 0) = s(s(s(0)))

= s(s(s(0) + 0)) = s(s(0) + s(0)) = s(0) + s(s(0))

Complicated! Using termination and confluence, we could have
instead computed the normal form of both sides, and simply
compared them! (See next slides.)

See also: Assignment 2.2.
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Term Rewriting

Termination of
→
E

Definition (Termination)

(Σ,
→
E ) has infinite computations, if there is a function a : N→ TΣ(X )

such that

a(0)→→
E

a(1)→→
E

a(2)→→
E
. . .→→

E
a(n)→→

E
a(n + 1) . . .

We say it is terminating, when it does not have infinite computations.

Example (Termination)

For E = {a = b},
→
E is terminating.

For E = {a = b, b = a},
→
E is not terminating.
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Term Rewriting

Confluence of
→
E

Definition (Confluence)

Confluence is the property that guarantees the order of applying
equalities is immaterial, formally:
∀t, t1, t2.t →∗ t1 ∧ t →∗ t2 ⇒ ∃s.t1 →∗ s ∧ t2 →∗ s

t

t1 t2

s

Example (Confluence)

For E = {a = b, a = c}, we have that
→
E is not confluent, as b and c

are reachable from a, but not joinable.
For E = {a = b, a = c , b = c}, then

→
E is confluent.
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The Dolev-Yao-Style Adversary

Modeling the Adversary

Initiator

Protocol specification Protocol execution

Responder

Alice as
initiator

Alice as
initiator

Bob as
initiator

Bob as
responder

Charlie as
responder

request

{| m |}k

cryptographic primitives

communication model

agent model

Network
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The Dolev-Yao-Style Adversary

Danny Dolev & Andrew C. Yao

On the Security of Public Key Protocols (IEEE Trans. Inf. Th., 1983)

• Consider a public key system in which for every user X
F there is a public encryption function EX

— every user can apply this function.
F and a private decryption function DX

— only X can apply this function.
F These functions have the property that EXDX = DXEX = 1.

• The Dolev-Yao adversary:
F Controls the network (read, intercept, send)
F Is also a user, called Z
F Can apply EX for any X
F Can apply DZ
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The Dolev-Yao-Style Adversary

Dolev-Yao Deduction

Definition (Adversary Knowledge)

We represent the adversary knowing a term t by a fact K(t). The set
of the adversary’s knowledge is K and contains facts of the form
K(t), all of which are persistent.

Definition (Adversary Knowledge Derivation)

The adversary can use the following inference rules on the state:

Fr(x)

K(x)

Out(x)

K(x)

K(x)

In(x)

K(t1) . . .K(tk)

K(f (t1, ..., tk))
∀f ∈ Σ(k-ary)

Note that terms are used modulo the equational theory. So, given
K(< t1, t2 >) the operator fst can be applied, and the result is K(t1).
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The Dolev-Yao-Style Adversary

Dolev-Yao Deduction

Example

Given K(x),K({|b, n|}k),K(k),K(m) ∈ K. Use the equational theory
E (containing decryption and pairing) to derive K({|m|}prf (n,x))

K(m)

K({|b, n|}k) K(k)

K({|{|b, n|}k |}k)

K(b, n)
E

K(snd(b, n))

K(n)
E

K(x)

K(prf (n, x))

K({|m|}prf (n,x))
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The Dolev-Yao-Style Adversary

Dolev-Yao Deduction

Definition (Adversary Knowledge Derivation as rewrite rules)

[Fr(x)] −→ [K(x)]

[Out(x)] −→ [K(x)]

[K(x)]
K(x)−−−→ [In(x)]

[K(t1), . . . ,K(tk)] −→ [K(f (t1, . . . , tk))] ∀f ∈ Σ(k-ary)

As you see, the adversary deriving a message and then sending it (via
In) is annotated with the action fact K (identical to its state fact of
the same name!), and we use this for our reasoning later.
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AnB Semantics

Outline

1 Term Rewriting

2 The Dolev-Yao-Style Adversary

3 AnB Semantics

4 Rewriting-based Protocol Syntax

5 Protocol Semantics
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AnB Semantics

Outline

Basic ideas:

• We express the semantics of an AnB specification by a finite set
P of role descriptions.

• Additionally, define an initial state ([], IK 0, th0) with an infinite
number of threads.

• Then the semantics of role-descriptions defines an infinite-state
transition system.
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AnB Semantics

Recall initial idea

Split a message sequence chart into roles:

A B

{NA, A}pk(B)

{NA,NB}pk(A)

{NB}pk(B)

msc NSPK
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{NA, A}pk(B)

{NA,NB}pk(A)

{NB}pk(B)
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B

{NA, A}pk(B)

{NA, NB}pk(A)

{NB}pk(B)

msc NSPK B
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AnB Semantics

Recall initial idea

Not trivial for all protocols:

A B

{|M |}K

{|{|M |}K |}k(A,B)

{|K|}k(A,B)

msc Encryption-Example

Here, k(A,B) is a shared key of A and B, K is fresh.
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AnB Semantics

Recall initial idea

Not trivial for all protocols:

A

{|M |}K

{|{|M |}K |}k(A,B)

{|K|}k(A,B)

msc

Encryption-Example A

B

{|M |}K

{|{|M |}K |}k(A,B)

{|K|}k(A,B)

msc

Encryption-Example B

This is wrong: B cannot decrypt/check the format of the first
message... before receiving the third!
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AnB Semantics

Problems with the naive translation

• All protocols where agents cannot fully decrypt messages they
receive: Kerberos, NSCK, many other shared-key examples.

• Diffie-Hellman.

• All these protocols would give unrealistic models.

• No executability check: can the agents generate all messages as
they are supposed to?

• Construction of messages depends on agents’ view of the
messages and algebraic properties.
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AnB Semantics

A running example for the semantics of AnB

Protocol : Diffie-Hellman
Types :
A A,B;
Number g ,X ,Y ,Msg ;
Function pk;

Knowledge :
A : A,B, g , pk, (pk(A))−1 ;
B : B, g , pk, (pk(B))−1 ;

Actions :
A → B : {exp(g ,X )}(pk(A))−1

B → A : {exp(g ,Y )}(pk(B))−1

A → B : {|A,Msg |}exp(exp(g ,X ),Y )

Goals :
A •→• B : Msg
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AnB Semantics

Construction of Messages

Consider the set of messages M that an agent knows at a certain
stage of the protocol execution:

Example (Diffie-Hellman, Alice, receiving msg. 2)

M = {A,B, pk, (pk(A))−1,︸ ︷︷ ︸
Initial Knowledge

X ,Msg︸ ︷︷ ︸
created

{exp(g ,Y )}(pk(B))−1︸ ︷︷ ︸
received

}

The next outgoing message of Alice is m = {|A,Msg |}exp(exp(g ,X ),Y ).

Crucial questions for defining the semantics:

• What can she check about M?

• Can she construct m from knowledge M? Executability.

• If she can construct m: how?

To formally define this, we begin by labeling each element of M with
a new variable Xi .
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AnB Semantics

Labeled Adversary Deduction

We define a variant DY l of the Dolev-Yao closure for labeled terms:

Definition

ml ∈ DY l(M)
Axiom (ml ∈ M) sk ∈ DY l(M)

t l ∈ DY l(M)
Algebra (s ≈ t, l ≈ k)

t l11 ∈ DY l(M) . . . t lnn ∈ DY l(M)

f (t1, . . . , tn)f (l1,...,ln) ∈ DY l(M)
Composition (f ∈ Σp)

We push implicit decryption under the carpet here (a bit tricky). . .
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AnB Semantics

Construction of Messages

Example (Diffie-Hellman, Alice, receiving msg. 2)

M = {AX0 ,BX1 , pkX2 , (pk(A)X3)−1,︸ ︷︷ ︸
Initial Knowledge

XX4 ,MsgX5︸ ︷︷ ︸
created

{exp(g ,Y )}(pk(B))−1
X6︸ ︷︷ ︸

received

}

The next outgoing message of Alice is m = {|A,Msg |}exp(exp(g ,X ),Y ).

Alice can derive m:

{exp(g ,Y )}(pk(B))−1
X6

open({exp(g ,Y )}(pk(B))−1)open(X6)

exp(g ,Y )open(X6) XX4

exp(exp(g ,Y ),X )exp(open(X6),X4)

exp(exp(g ,X ),Y )exp(open(X6),X4) . . .

{|A,Msg |}{|X0,X5|}exp(open(X6),X4)

exp(exp(g ,X ),Y )

. . . as {|X0,X5|}exp(open(X6),X4).
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AnB Semantics

Checking Messages

Crucial questions for defining the semantics:

• What can she check about M?

X Can she construct m from knowledge M? Executability.

X If she can construct M: how?
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AnB Semantics

Checking Messages

Checking is quite tricky, again:

• In general, all pairs (l1, l2) of distinct derivations the agent can do
and that should give the same term t according to the protocol:

t l1 , t l2 ∈ DY l(M)

• In general, there are infinitely many checks.

• For many algebraic theories (e.g. exponentiation) we can reduce
this to an equivalent finite set of checks.

• These checks and the explicit destructors can, for many
examples, be translated into pattern matching, e.g.

rcv(X6) where verify(pk(B),X6) ≈ true
snd(. . . , open(X6), . . .)

7→ rcv({X ′6}(pk(B))−1)

snd(. . . ,X ′6, . . .)
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AnB Semantics

Result on Diffie-Hellman:

A

{exp(g,X)}inv(pk(A))

{GY }inv(pk(B))

{|A,B,Msg |}exp(GY ,X)

msc DH A

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 39 of 67



AnB Semantics

Our problem from before

A B

{|M |}K

{|{|M |}K |}k(A,B)

{|K|}k(A,B)

msc Encryption-Example

. . . requires some extension of role-descriptions!
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AnB Semantics

Our problem from before

B

X

{|X |}k(A,B)

X = {|X ′|}K

{|K|}k(A,B)

msc

Encryption-Example B

. . . requires some extension of role-descriptions!
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AnB Semantics

Initial state

Definition

• Let Agent ⊂ Σ0 be the set of all (constant) agent names,
including the adversary i .

• Let V be the set of all variables in the initial knowledge of the
roles (which are of type agent according to AnB syntax).

• Let SubV be the set of all substitutions σ with dom(σ) = V and
ran(σ) ⊂ Agent.

• IK 0 =
⋃
σ∈SubV∧Rσ=i init(R)σ where init(R) is the initial

knowledge of role R in the AnB spec.

Example

Let Agent = {a, b, i}. For NSPK, we the set of roles V = {A,B}.
SubV = { [A 7→ a,B 7→ b], [A 7→ b,B 7→ a], [A 7→ a,B 7→ i ], . . .}.
IK 0 = {a, b, i , pk, (pk(i))−1}.
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AnB Semantics

Initial state (cont.)

Definition

Consider a protocol P with roles dom(P) = {R1, . . . ,Rk} and let
SubV = {σ1, σ2, . . .}
• Let TID = ({1, . . . , k} × N× N)

• For each (r , i , n) ∈ TID, let σ(r ,i ,n) a substitution with domain
fv(Rr ) where vσ(r ,i ,n) = vσi for all role names v ∈ V ∩ fv(Rr )
and where the remaining free variables, i.e. fv(Rr ) \ V , are
mapped to fresh constants (disjoint over all σ(r ,i ,n)).

• role((r , i , n)) = Rr for all (r , i , n) ∈ TID

• player((r , i , n)) = Rrσ(r ,i ,n) for all (r , i , n) ∈ TID

• th0((r , i , n)) = P(Rr )σ(r ,i ,n) for all (r , i , n) ∈ TID where
player((r , i , n)) 6= i .
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AnB Semantics

Initial state (cont.)

For the NSPK attack, we need the following two threads, where
σ1 = [A 7→ a,B 7→ b], σ3 = [A 7→ a,B 7→ i ]

Example

σ(1,3,0) = [A 7→ a,B 7→ i ,NA 7→ na(1,3,0)]
σ(2,1,0) = [B 7→ b,NB 7→ nb(2,1,0)]

Actually, since A /∈ fvB, also σ2,3,0 would equally work for the attack.
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AnB Semantics

Overview

• Introduction
• Two formal specification languages:

AnB

Syntax

AnB

Semantics

Roles

Syntax

Roles

Semantics

The Dolev-Yao-
style adversary

• Security Properties
• Landscape of Protocol Models: a quick tour.
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Rewriting-based Protocol Syntax

Outline

1 Term Rewriting

2 The Dolev-Yao-Style Adversary

3 AnB Semantics

4 Rewriting-based Protocol Syntax

5 Protocol Semantics
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Rewriting-based Protocol Syntax

Restricted Tamarin syntax with explicit send/receive

A protocol defines the behavior of a set of roles. Every role has a
name R and consists of a set of rules, specifying the sending and
receiving of messages, and the generation of fresh constants.

Such a
rule is of the form

[St R s(A, id , k1, . . . , kn), ...]
a−→ [St R s′(A, id , k ′1, . . . , k

′
m), ...]

where R is the role name, s ∈ N the index for the present protocol
step of the role, s ′ = s + 1 the index for the subsequent step. A is the
agent name, id the thread identifier for this instantiation of role R,
and the ki , k

′
j ∈ TΣ(X ) are terms in the agent’s knowledge.

We call St R s(A, . . .) an agent state fact for role R.

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 46 of 67



Rewriting-based Protocol Syntax

Restricted Tamarin syntax with explicit send/receive

A protocol defines the behavior of a set of roles. Every role has a
name R and consists of a set of rules, specifying the sending and
receiving of messages, and the generation of fresh constants. Such a
rule is of the form

[St R s(A, id , k1, . . . , kn), ...]
a−→ [St R s′(A, id , k ′1, . . . , k

′
m), ...]

where R is the role name, s ∈ N the index for the present protocol
step of the role, s ′ = s + 1 the index for the subsequent step. A is the
agent name, id the thread identifier for this instantiation of role R,
and the ki , k

′
j ∈ TΣ(X ) are terms in the agent’s knowledge.

We call St R s(A, . . .) an agent state fact for role R.

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 46 of 67



Rewriting-based Protocol Syntax

Restricted Tamarin syntax with explicit send/receive

A protocol defines the behavior of a set of roles. Every role has a
name R and consists of a set of rules, specifying the sending and
receiving of messages, and the generation of fresh constants. Such a
rule is of the form

[St R s(A, id , k1, . . . , kn), ...]
a−→ [St R s′(A, id , k ′1, . . . , k

′
m), ...]

where R is the role name, s ∈ N the index for the present protocol
step of the role, s ′ = s + 1 the index for the subsequent step. A is the
agent name, id the thread identifier for this instantiation of role R,
and the ki , k

′
j ∈ TΣ(X ) are terms in the agent’s knowledge.

We call St R s(A, . . .) an agent state fact for role R.

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 46 of 67



Rewriting-based Protocol Syntax

Nomenclature

Definition (Facts)

We call the top-level operators of the left- and right-hand sides of
rules state facts, e.g., St R s(. . .), and we call the top-level operators
in the rule label a the action facts. All arguments of facts are terms in
TΣ(X ).

Definition (Events)

For a protocol rule l
a−→ r the actions a include all the information we

will reason about. Thus, our traces of events will consist of sequences
of such labels.
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Rewriting-based Protocol Syntax

Communication

Messages are sent and received via In and Out facts, respectively, and
any rule with such a fact also will have a matching Send and Recv
action, respectively.

Example (Rule examples)

Receive rule example

[St I 2(A, 17, k), In(m)]
Recv(A,m)−−−−−−→ [St I 3(A, 17, k ,m)]

Send rule example

[St I 3(A, 17, k ,m)]
Send(A,{m}k ))−−−−−−−−−→ [St I 4(A, 17, k ,m),Out({m}k)]
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Rewriting-based Protocol Syntax

Fresh and public Terms

Definition (Fresh terms)

Agents generate fresh terms using fresh facts, denoted by Fr. These
fresh terms represent randomness being used, are assumed
unguessable and unique, i.e., can represent nonces.

There is a countable supply of fresh terms, each as argument of a
fresh fact, usable in rules.

Definition (Public terms)

We define public terms to be terms known to all participants of a
protocol. These include all agent names and all constants.
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Rewriting-based Protocol Syntax

Well-formedness

For a protocol rule l
a−→ r to be well-formed, the following conditions

must be satisfied (except initialization rules):

1 Only In, Fr, and state facts occur in l .

2 Only Out and state facts occur in r .

3 Exactly one state fact occurs in each of l and r .

4 Either In or Out facts occur in the rule, never both.

5 If St R s(A, id , k1, . . . , kn) occurs in l , then

(i) every In fact is of the form In(x), where x ∈ TΣ(X ),
(ii) every Out fact is of the form Out(x), where x ∈ TΣ(X ) and x is

derivable from public terms, terms in Fr facts occurring in l and
the terms k1, . . . , kn.

(iii) the fact St R s′(A, id , k ′
1, . . . , k

′
m) occurs in r , where s ′ = s + 1

and k ′
1, . . . , k

′
m are derivable from public terms, terms in Fr facts

occurring in l , and the terms k1, . . . , kn.

6 Every variable in r that is not public must occur in l .
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Rewriting-based Protocol Syntax

Role Syntax

Graphical:

A

{NA, A}pk(B)

{NA,NB}pk(A)

{NB}pk(B)

msc NSPK A
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Rewriting-based Protocol Syntax

Role specification rules

A

{NA, A}pk(B)

{NA,NB}pk(A)

{NB}pk(B)

msc NSPK A

[St A 1(A, tid , skA, pk(skB)), Fr(NA)] −→
[St A 2(A, tid , skA, pk(skB),NA), Out({NA,A}pk(skB)]

[St A 2(A, tid , skA, pk(skB),NA), In({NA,NB}pk(skA))] −→
[St A 3(A, tid , skA, pk(skB),NA,NB)]

[St A 3(A, tid , skA, pk(skB),NA,NB)] −→
[St A 4(A, tid , skA, pk(skB),NA,NB), Out({NB}pk(skB))]
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Rewriting-based Protocol Syntax

PKIs and longterm data

A B

{NA, A}pk(B)

{NA,NB}pk(A)

{NB}pk(B)

msc NSPK

Generate longterm keys and public keys.

[Fr(skR)] −→ [Ltk(R, skR),Out(pk(skR))]
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Rewriting-based Protocol Syntax

Initialization of roles

A

{NA, A}pk(B)

{NA,NB}pk(A)

{NB}pk(B)

msc NSPK A

For each role R there must be an initialization rule which is
instantiated with a name A and a thread identifier id :

[Fr(id), Ltk(A, skA), Ltk(B, skB)]
Create R(A,id)−−−−−−−−→

[St R 1(A, id , skA, pk(skB)), Ltk(A, skA), Ltk(B, skB)]
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Rewriting-based Protocol Syntax

Role-based Protocol Property Specifications

Definition (Events for property specification)

Event(Term) = Send(R,Term) | Recv(R,Term) |
Claim claimtype(R,Term∗) |
Create R(R, id)

We use Claim actions for property specification. Verification uses
claims and messages.

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 55 of 67



Protocol Semantics
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Protocol Semantics

Outlook

We will define a trace semantics for protocols in terms of labeled
transition systems.
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Protocol Semantics

Labeled Multiset Rewriting

Definition (Multiset)

A multiset is a set of elements, each imbued with a multiplicity.
Instead of stating an explicit multiplicity, we may also simply write
elements multiple times.
We use \] for the multiset difference, and ∪] for the union.

Definition (Labeled multiset rewriting)

A labeled multiset rewriting rule is a triple, l , a, r , each of which is a
multisets of facts, and written as:

l
a−→ r
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Protocol Semantics

State

Definition (State)

A state is a multiset of facts.

Example (State)

St R 1(A, id , k1, k2),Out(k1),Out(k2),Out(k2)
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Protocol Semantics

Ground substitution

Definition (Ground substitutition)

A substitution is called ground when each variable is mapped to a
ground term.

Definition (Ground instances)

We call the ground instances of a term t all those terms tσ that are
ground for some (ground) substitution.
A fact F is ground if all its terms are ground. The multiset of all
ground facts is G].
For a rule, its ground instances are those where all facts are ground,
and we use

ginsts(R)

for the set of all ground instances of the set of rules R.
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Protocol Semantics

Fresh rule

Definition (Fresh rule)

We define a special rule for the creation of fresh facts. This is the
only rule allowed to produce fresh facts and has no precondition:

[] −→ [Fr(N)]

Note that each created nonce N is fresh, and thus unique.
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Protocol Semantics

Labeled operational semantics - single step

Definition (Steps)

For a multiset rewrite system R we define the labeled transition
relation step, steps(R) ⊆ G] × ginsts(R)× G], as follows:

l
a→ r ∈ ginsts(R), l ⊆] S , S ′ = (S \] l) ∪] r

(S , l
a→ r , S ′) ∈ steps(R)
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Protocol Semantics

Executions

Definition (Execution)

An execution of R is an alternating sequence

S0, (l1
a1→ r1),S1, . . . ,Sk−1(lk

ak→ rk), Sk

of states and multiset rewrite rule instances with

(1) S0 = ∅
(2) ∀i : Si−1, (li

ai→ ri ), Si ∈ steps(R)

(3) Fresh names are unique, i.e., for n fresh, and

(li
ai→ ri ) = (lj

aj→ rj) = ([]→ [Fr(n)]) it holds that i = j .
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Protocol Semantics

Trace

Definition (Trace)

The trace of an execution

S0, (l1
a1→ r1),S1, . . . ,Sk−1(lk

ak→ rk), Sk

is defined by the sequence of the multisets of its action labels, i.e.:

a1; a2; . . . ; ak
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Protocol Semantics

Semantics of a rule

Two parts:

• State transition

• Trace event

Example (Transition example)

[St I 2(A, 17, k), In(m)]
Recv(A,m)−−−−−−→ [St I 3(A, 17, k ,m)]

Agent state changes, and In fact is consumed, while Recv action is
added to trace.
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Explicit vs. Implicit Destructors

Implicit Destructor Rules (no destruction operation)

〈m1,m2〉 ∈ DY(M)

mi ∈ DY(M)
Proji

{|m|}k ∈ DY(M) k ∈ DY(M)

m ∈ DY(M)
DecSym

{m}k ∈ DY(M) (k)−1 ∈ DY(M)

m ∈ DY(M)
DecAsym

{m}(k)−1 ∈ DY(M)

m ∈ DY(M)
OpenSig

versus

Explicit Destructors with algebraic properties

π1(〈m1,m2〉) ≈ m1 {{m}k}(k)−1 ≈ m

π2(〈m1,m2〉) ≈ m2 open({m}(k)−1) ≈ m

{|{|m|}k |}k ≈ m
• Implicit destructor rules are redundant with these properties
• Explicit has strictly more derivable messages
• Considerably more difficult to handle
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