
Verifying Security Protocols in Tamarin

Ralf Sasse
Institute of Information Security

ETH Zurich

Tamarin Day 1, v.1
Jan 25, 2016

Organization of the course

• No grade.
F Participation required in lectures and exercises.

• Web resources (slides, exercises, and protocols).
F Download Link???
F Slides available now.
F https://github.com/tamarin-prover/tamarin-prover

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 2 of 76

https://github.com/tamarin-prover/tamarin-prover

Resources

• Literature.
F Franz Baader and Tobias Nipkow. Term Rewriting and All That.

Cambridge University Press, 1998.
F Cas Cremers and Sjouke Mauw. Operational Semantics and

Verification of Security Protocols. Springer, 2012.
http://link.springer.com/book/10.1007/978-3-540-78636-8/page/1

F Benedikt Schmidt. Formal analysis of key exchange protocols and
physical protocols. Ph.D. thesis, ETH Zürich, 2012.
http://dx.doi.org/10.3929/ethz-a-009898924

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 3 of 76

http://link.springer.com/book/10.1007/978-3-540-78636-8/page/1
http://dx.doi.org/10.3929/ethz-a-009898924

Contents

module content

1 Introduction to Security Protocols, Protocol Specification
2 Term Rewriting; Protocol Syntax and Semantics
3 Security Properties and Algorithmic Verification
4 Observational Equivalence
5 Applications: HISP, ARPKI

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 4 of 76

Formal Methods in Information Security

A historical perspective (with focus on security protocols):

1983 Symbolic attacker model [Dolev-Yao]
Undecidability of secrecy problem for security protocols [Even-Goldreich]

1989 BAN logic for security protocol analysis [Burrows, Abadi, and Needham]
1995 MITM attack on Needham-Schroeder Public Key Protocol using the

automatic verification tool Casper/FDR [Lowe]

1998 Inductive approach to verifying security protocols [Paulson]

2001 ProVerif: Efficient symbolic protocol verification tool [Blanchet]
Constraint-based decision procedure for bounded sessions [Millen-Shmatikov]
NP-Completeness of protocol insecurity for finite number of sessions
[Rusinowitch-Turuani]

2005 Avispa protocol verification tools (OFMC, SATMC, ...) [Armando et al.]

2006 Scyther protocol verification tool [Cremers]

2012 Tamarin protocol verification tool [Meier, Schmidt]

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 5 of 76

Outline

1 Motivation

2 Building a key establishment protocol

3 Formalizing Security Protocols: An Example

4 Protocol attacks

5 Outlook on lectures on security protocols

6 Formal Models

7 Protocol Specification Languages

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 6 of 76

Motivation

Outline

1 Motivation

2 Building a key establishment protocol

3 Formalizing Security Protocols: An Example

4 Protocol attacks

5 Outlook on lectures on security protocols

6 Formal Models

7 Protocol Specification Languages

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 7 of 76

Motivation

Motivation

• RSA, ECC, AES, . . . provide provably very good cryptographic
primitives.

• How can we construct secure distributed applications with these
primitives? E.g.:

F E-commerce
F E-banking
F E-voting
F Mobile communication
F Digital contract signing

• Even if cryptography is hard to break, this is not a trivial task.

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 8 of 76

Motivation

Motivation
Example: Securing an e-banking application

A→ B: “Send $10,000 to account X ”
B → A: “I’ll transfer it now”

• How does B know the message originated from A?

• How does B know A just said it?

• Confidentiality, integrity, accountability, non-repudiation, ...?

Solutions involve protocols like IPsec, Kerberos, SSH, SSL/TLS, SET,
PGP, ... We’ll consider underlying ideas and some example protocols.

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 9 of 76

Motivation

Motivation
Example: Securing an e-banking application

A→ B: “Send $10,000 to account X ”
B → A: “I’ll transfer it now”

• How does B know the message originated from A?

• How does B know A just said it?

• Confidentiality, integrity, accountability, non-repudiation, ...?

Solutions involve protocols like IPsec, Kerberos, SSH, SSL/TLS, SET,
PGP, ... We’ll consider underlying ideas and some example protocols.

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 9 of 76

Motivation

Motivation
Example: Securing an e-banking application

A→ B: “Send $10,000 to account X ”
B → A: “I’ll transfer it now”

• How does B know the message originated from A?

• How does B know A just said it?

• Confidentiality, integrity, accountability, non-repudiation, ...?

Solutions involve protocols like IPsec, Kerberos, SSH, SSL/TLS, SET,
PGP, ... We’ll consider underlying ideas and some example protocols.

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 9 of 76

Motivation

What is a protocol?

• A protocol consists of a set of rules (conventions) that determine
the exchange of messages between two or more principals.
In short, a distributed algorithm with emphasis on
communication.

• Security (or cryptographic) protocols use cryptographic
mechanisms to achieve their security goals.
Examples: Entity or message authentication, key establishment,
integrity, timeliness, fair exchange, non-repudiation, ...

• Small recipes, but nontrivial to design and understand.
Analogous to programming Satan’s computer.

• “Three-line programs that people still manage to get wrong”

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 10 of 76

Building a key establishment protocol

Outline

1 Motivation

2 Building a key establishment protocol

3 Formalizing Security Protocols: An Example

4 Protocol attacks

5 Outlook on lectures on security protocols

6 Formal Models

7 Protocol Specification Languages

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 11 of 76

Building a key establishment protocol

Building a key establishment protocol

• An attempt to design a good protocol (from first principles).

• We choose one common scenario:
F A set of users, any 2 of whom may wish to establish a new

session key for subsequent secure communications.
Note: Users are not necessarily honest! (More later)

F There is an honest server.
Note: Often called “trusted server”, but trust 6= honesty! We
assume that an honest server never cheats and never gives out
user secrets.

• We thus consider in this scenario a protocol with three roles:
initiator role A, responder role B, and server role S .

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 12 of 76

Building a key establishment protocol

Preliminaries

• In a concrete execution of a protocol, the roles are played by
agents a.k.a. principals: a, b, c (charly), s, i (intruder), . . .

• We use i as the name of an agent whose long-term keys are
known to the adversary. No agent in our model knows that i ’s
long-term keys are known to the adversary.

• Security goals of the protocol:
F Key secrecy: At the end of the protocol, the session key KAB is

known to A and B, and possibly S , but to no other parties.
F Key freshness: A and B know that KAB is freshly generated.

• Formalization questions (that we will consider later):
F How do we formalize the protocol steps and goals?
F How do we formalize “knowledge”, “secrecy”, “freshness”?

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 13 of 76

Building a key establishment protocol

First attempt
A protocol that consists of 3 messages

S

A

1. A,B

E<G

2. KAB

E|�
3. KAB ,A

� ,2 B

1 A contacts S by sending
the identities of the 2
parties who are going to
share the session key.

2 S sends the key KAB to A.

3 A passes KAB on to B.

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 14 of 76

Building a key establishment protocol

Alice&Bob notation

S

A

1. A,B

E<G

2. KAB

E|�
3. KAB ,A

� ,2 B

1. A→ S : A, B

2. S → A : KAB

3. A→ B : KAB , A

Note: sender-receiver pairs “A→ B” in Alice&Bob notation are not
part of the communicated message.

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 15 of 76

Building a key establishment protocol

Protocol specification issues and conventions

S

A

1. A,B

E<G

2. KAB

E|�
3. KAB ,A

� ,2 B

1. A→ S : A, B

2. S → A : KAB

3. A→ B : KAB , A

• KAB does not contain any “information” about A and B. It is
simply a name for the bit-string representing the session key.

• What if a message of the wrong format or no message at all is
received? – Only messages passed in a successful protocol run
are specified.

• No specification of internal actions of principals. (E.g., “create
fresh KAB”, “store KAB as a key for A and B”.)

• Roles “know” what protocol run received messages are part of.

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 16 of 76

Building a key establishment protocol

Security issues

S

A

1. A,B

E<G

2. KAB

E|�
3. KAB ,A

� ,2 B

1. A→ S : A, B

2. S → A : KAB

3. A→ B : KAB , A

• First problem with this protocol?

Secrecy.
The session key KAB must be transported to A and B, but to no
other parties.

• A realistic assumption in typical communication systems such as
the Internet and corporate networks:

Assumption (Threat Assumption 1)

The adversary is able to eavesdrop on all sent messages.

⇒ Use cryptography.

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 17 of 76

Building a key establishment protocol

Security issues

S

A

1. A,B

E<G

2. KAB

E|�
3. KAB ,A

� ,2 B

1. A→ S : A, B

2. S → A : KAB

3. A→ B : KAB , A

• First problem with this protocol? Secrecy.
The session key KAB must be transported to A and B, but to no
other parties.

• A realistic assumption in typical communication systems such as
the Internet and corporate networks:

Assumption (Threat Assumption 1)

The adversary is able to eavesdrop on all sent messages.

⇒ Use cryptography.

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 17 of 76

Building a key establishment protocol

Second Attempt
Use cryptography

• Assume that S initially shares a secret key
k(U, S) with each user U of the system:

F k(A,S) with A,
F k(B,S) with B,

and encrypt message 2.

S

A

1. A,B

E<G

2. {|KAB |}k(A,S), {|KAB |}k(B,S)

E|�
3. {|KAB |}k(B,S),A

� ,2 B

• Problems with protocol?
F Eavesdropping? – No.

Assumption (Perfect Cryptography)

Encrypted messages may only be read by recipients who have the
required decryption key.

Assuming that cryptography is perfect allows us to abstract away
from the details of cryptographic algorithms.

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 18 of 76

Building a key establishment protocol

Second Attempt
Use cryptography

• Assume that S initially shares a secret key
k(U, S) with each user U of the system:

F k(A,S) with A,
F k(B,S) with B,

and encrypt message 2.

S

A

1. A,B

E<G

2. {|KAB |}k(A,S), {|KAB |}k(B,S)

E|�
3. {|KAB |}k(B,S),A

� ,2 B

• Problems with protocol?
F Eavesdropping?

– No.

Assumption (Perfect Cryptography)

Encrypted messages may only be read by recipients who have the
required decryption key.

Assuming that cryptography is perfect allows us to abstract away
from the details of cryptographic algorithms.

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 18 of 76

Building a key establishment protocol

Second Attempt
Use cryptography

• Assume that S initially shares a secret key
k(U, S) with each user U of the system:

F k(A,S) with A,
F k(B,S) with B,

and encrypt message 2.

S

A

1. A,B

E<G

2. {|KAB |}k(A,S), {|KAB |}k(B,S)

E|�
3. {|KAB |}k(B,S),A

� ,2 B

• Problems with protocol?
F Eavesdropping? – No.

Assumption (Perfect Cryptography)

Encrypted messages may only be read by recipients who have the
required decryption key.

Assuming that cryptography is perfect allows us to abstract away
from the details of cryptographic algorithms.

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 18 of 76

Building a key establishment protocol

Second Attempt
Security Issues

• Problem: information about who else has KAB is unprotected,
i.e. the principal’s names are not bound to KAB .

S

A

1. A,B

E<G

2. {|KAB |}k(A,S), {|KAB |}k(B,S)

E|�
3. {|KAB |}k(B,S),A

� ,2 B

• Adversary may not only eavesdrop on sent messages, but also
capture and modify them.

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 19 of 76

Building a key establishment protocol

Second Attempt
Security Issues

Assumption (Threat Assumption 2)

The adversary is able to intercept messages on the network and send
to anybody (under any sender name) modified or new messages based
on any information available.

• In other words: the adversary has complete control of the
network channel(s) over which protocol messages flow.
The adversary has complete control over the network.
• In contrast to ordinary communication protocols, we assume the

worst-case network adversary.
F Although there may be no more than 4 or 5 messages involved in

a legitimate session of the protocol, there are an infinite number
of variations in which the adversary can participate.

F These variations involve an unbounded number of messages and
each must satisfy the protocol’s security requirements.

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 20 of 76

Building a key establishment protocol

Binding Attack

There are several binding attacks on the second-attempt protocol,
e.g.:

i
1′. a,i � ,2

2′. {|kai |}k(a,s), {|kai |}k(i,s)

�lr s

a

1. a, b

@:E

2. {|kai |}k(a,s), {|kai |}k(i,s)

@z�
3. {|kai |}k(i,s), a

� ,2 i

• Modify the message from a to s so that s generates a key kai for
a and i and encrypts it with key k(i , s) known by the adversary.
• Since a cannot distinguish between encrypted messages meant

for other agents she will not detect the modification.
• a will believe that the protocol has been successfully completed

with b. However, the adversary knows kai and so can
masquerade as b as well as learn all information that a sends
intended for b.

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 21 of 76

Building a key establishment protocol

Binding Attack

i
1′. a,i � ,2

2′. {|kai |}k(a,s), {|kai |}k(i,s)

�lr s

a

1. a, b

@:E

2. {|kai |}k(a,s), {|kai |}k(i,s)

@z�
3. {|kai |}k(i,s), a

� ,2 i

• Note: This attack will only succeed if i is a legitimate system
user known to s, which is a realistic assumption:

Assumption (Threat Assumption 3)

The adversary may be a legitimate protocol participant (an insider),
or an external party (an outsider), or a combination of both.

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 22 of 76

Building a key establishment protocol

Third Attempt

• To overcome the binding attack, the names of the principals who
are to share KAB need to be bound cryptographically to the key.

S

A

1. A,B

?:D

2. {|KAB ,B|}k(A,S), {|KAB ,A|}k(B,S)

?z�
3. {|KAB ,A|}k(B,S)

� ,2 B

• Improvement: An adversary is unable to attack the protocol by
eavesdropping or modifying the messages sent between honest
parties (i.e., the previous two attacks fail).
• However, even now the protocol is not good enough to provide

security in normal operating conditions.

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 23 of 76

Building a key establishment protocol

Third Attempt
Security Issues

• A whole class of attacks becomes possible when old keys (or
other security-relevant data) may be replayed in a later session.
(Replay is possible by Threat Assumptions 1 & 2.)
• Additional problem: difference in quality between long-term keys

and the session keys KAB generated for each protocol session.

Assumption (Threat Assumption 4)

The adversary is able to obtain the value of the session key KAB used
in any “sufficiently old” previous run of the protocol.

• Reasons for using session keys (as opposed to long-term keys):
F Key distribution problem: O(n2) keys needed for n principals.
F Encrypted messages are vulnerable to attack (by cryptanalysis).
F Communications in different sessions should be separated. In

particular, it should not be possible to replay messages from
previous sessions.

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 24 of 76

Building a key establishment protocol

Replay Attack and Session Key Compromisation

i

a

1. a, b

; 8C

2. {|kab′, b|}k(a,s), {|kab′, a|}k(b,s)

;x�
3. {|kab′, a|}k(b,s)

� ,2 b

• i masquerades as s and replays kab′, an old key used by a and b
in a previous session.

F By Threat Assumptions 1 & 2, the adversary can be expected to
know and replay the encrypted messages in which kab′ was
transported to a and b.

• After the protocol run, the adversary can decrypt, modify, or
insert information encrypted with kab′ (no confidentiality, no
integrity).

F By Threat Assumption 4, the adversary can be expected to know
kab′.

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 25 of 76

Building a key establishment protocol

Thwarting the Replay Attack

• The replay attack can still be regarded as successful even if the
adversary has not obtained the value of kab′:

F Adversary succeeds in making a and b accept an old session key!
F The attack allows i to replay messages protected by kab′ which

were sent in the previous session.

• Of course: provided that a and b don’t check the key!
F “Principals don’t think” but just follow the protocol.

• Various techniques may be used to guard against replay of
session key, e.g., the challenge-response method:

Definition

Def.: A nonce (“a number used only once”) is a random value
generated by one principal and returned to that principal to show that
a message is newly generated.

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 26 of 76

Building a key establishment protocol

Fourth Attempt

S

A

1. A,B,NA

2 5=

2. {|KAB ,B,NA, {|KAB ,A|}k(B,S)|}k(A,S)

2u}
3. {|KAB ,A|}k(B,S)

� ,2

4. {|NB |}KAB

�lr

5. {|NB−1 |}KAB

� ,2

B

• A sends her nonce NA to S with the request for a new key.

F Note: NA is just a name for a number; nothing in NA

identifies who created it.

• If this same value is received with the session key, then A can
deduce that the key has not been replayed.
This reasoning is valid if session key and nonce are bound
together cryptographically in such a way that only S can form
such a message.

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 27 of 76

Building a key establishment protocol

Fourth Attempt

S

A

1. A,B,NA

2 5=

2. {|KAB ,B,NA, {|KAB ,A|}k(B,S)|}k(A,S)

2u}
3. {|KAB ,A|}k(B,S)

� ,2

4. {|NB |}KAB

�lr

5. {|NB−1 |}KAB

� ,2

B

• If the encrypted key for B is included in the encrypted part of
A’s message, then A can gain assurance that it is fresh.
• It is tempting to believe that A may pass this assurance on to B

in an extra handshake:

F B generates a nonce NB and sends it to A protected by
KAB .

F A uses KAB to send a reply to B (“−1” to avoid replay of
message 4).

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 28 of 76

Building a key establishment protocol

The NSCK Protocol

S

A

1. A,B,NA

2 5=

2. {|KAB ,B,NA, {|KAB ,A|}k(B,S)|}k(A,S)

2u}
3. {|KAB ,A|}k(B,S)

� ,2

4. {|NB |}KAB

�lr

5. {|NB−1 |}KAB

� ,2

B

• This is actually a famous security protocol:
Needham Schroeder with Conventional Keys [Clark-Jacob §6.3.1]

• Published by Needham and Schroeder in 1978, it has been the
basis for a whole class of related protocols.

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 29 of 76

Building a key establishment protocol

The NSCK Protocol
Security Issue

S

A

1. A,B,NA

2 5=

2. {|KAB ,B,NA, {|KAB ,A|}k(B,S)|}k(A,S)

2u}
3. {|KAB ,A|}k(B,S)

� ,2

4. {|NB |}KAB

�lr

5. {|NB−1 |}KAB

� ,2

B

• Unfortunately, this protocol is vulnerable to a famous attack due
to Denning and Sacco.

F Problem: assumption that only A can form correct reply to
message 4 from B.

• Since the adversary can be expected to know the value of an old
session key, this assumption is unrealistic.

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 30 of 76

Building a key establishment protocol

Attack on NSCK

S

A

1. A,B,NA

2 5=

2. {|KAB ,B,NA, {|KAB ,A|}k(B,S)|}k(A,S)

2u}
3. {|KAB ,A|}k(B,S)

� ,2

4. {|NB |}KAB

�lr

5. {|NB−1 |}KAB

� ,2

B

Adversary masquerades as a and convinces b to use old key: kab′:

i
3. {|kab′, a|}k(b,s)

� ,2

4. {|nb|}kab′
�lr

5. {|nb−1 |}kab′
� ,2

b

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 31 of 76

Building a key establishment protocol

Fifth and Final Attempt

Different approach: throw away the assumption that it is
inconvenient for both B and A to send their challenges to S .

S

A

2. A,B,NA,NB

; 8C

3. {|KAB ,B,NA|}k(A,S), {|KAB ,A,NB |}k(B,S)

;x� 1. A,B,NB�lr

4. {|KAB ,A,NB |}k(B,S)

� ,2
B

• The protocol is now initiated by B who sends his nonce NB first
to A.

• A adds her nonce NA and sends both to S , who now sends KAB

in separate messages for A and B, which can be verified as fresh
by the respective recipients.

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 32 of 76

Building a key establishment protocol

Fifth and Final Attempt

S

A

2. A,B,NA,NB

; 8C

3. {|KAB ,B,NA|}k(A,S), {|KAB ,A,NB |}k(B,S)

;x� 1. A,B,NB�lr

4. {|KAB ,A,NB |}k(B,S)

� ,2
B

• It may seem that we have achieved more than the previous
protocol using fewer messages, but in fact...

F In the NSCK, A could verify that B has in fact received the key.
F This property of key confirmation is achieved due to B’s use of

the key in message 4, assuming that {|NB |}KAB
cannot be formed

without knowledge of KAB .
F In our final protocol, neither A nor B can deduce at the end of a

successful protocol run that the other has actually received KAB .
(Problem?)

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 33 of 76

Building a key establishment protocol

Is it Secure?

S

A

2. A,B,NANB

; 8C

3. {|KAB ,B,NA|}k(A,S), {|KAB ,A,NB|}k(B,S)

;x� 1. A,B,NB�lr

4. {|KAB ,A,NB|}k(B,S)

� ,2
B

• This protocol avoids all the attacks that we have seen so far, as
long as the cryptographic algorithm used provides the properties
of both confidentiality and integrity, and the server S acts
correctly.

• It would be rash to claim that this protocol is secure before
giving a precise meaning to that term!

• The security of a protocol must always be considered relative to
its goals.

Hence, we need a means to formalize protocols and goals.

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 34 of 76

Building a key establishment protocol

Exercise

Can you improve on these protocols using Diffie-Hellman?
Why is that a much better idea?

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 35 of 76

Building a key establishment protocol

Summary: adversary, attacks, and defenses

The adversary must be expected to

(TA 1) eavesdrop on messages, but cannot break cryptography,

(TA 2) completely control the network, i.e.,

• immediately intercept, modify, and fake messages,
• compose/decompose messages with the available keys,

(TA 3) participate in the protocol (as insider or outsider), and

(TA 4) be able to obtain old session keys.

TA 1-3: worst-case assumption of network adversary (after
Dolev-Yao)

Attacks and defenses:

• Eavesdropping: encrypt session keys using long-term keys

• Binding attack: cryptographically bind names to session keys

• Replay attack: use challenge-response based on nonces

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 36 of 76

Formalizing Security Protocols: An Example

Outline

1 Motivation

2 Building a key establishment protocol

3 Formalizing Security Protocols: An Example

4 Protocol attacks

5 Outlook on lectures on security protocols

6 Formal Models

7 Protocol Specification Languages

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 37 of 76

Formalizing Security Protocols: An Example

An authentication protocol

The Needham-Schroeder Public Key protocol (NSPK, 1978):

1. A→ B : {NA,A}pk(B)

2. B → A : {NA,NB}pk(A)

3. A→ B : {NB}pk(B)

Security goal: mutual authentication of A and B.

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 38 of 76

Formalizing Security Protocols: An Example

How the protocol is executed
1. A→B : {NA,A}pk(B)
2. B→ A : {NA,NB}pk(A)
3. A→B : {NB}pk(B)

Role A:
1 Construct and send message 1.

F Generate nonce NA, concatenate it with name A, and encrypt
with pk(B).

F Send {NA,A}pk(B) to B.

2 Receive a message M and check that it is message 2.
Q: how to do this when running multiple sessions (or protocols)
in parallel?

F Decrypt M with sk(A), call it M ′. If decryption fails, reject M.
Q: how to detect wrong decryption?
Q: what to do about rejected messages?

F Split the message into two nonces NA′ and NB. If not possible,
reject M.
Q: how to check this?

F Check that NA′ = NA; if not, reject M.
3 Construct and send message 3.

F Encrypt NB with pk(B)
F Send {NB}pk(B) to B.

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 39 of 76

Formalizing Security Protocols: An Example

Informal correctness

1. A→ B : {NA,A}pk(B) “This is Alice and I have chosen a
nonce NA.”

2. B → A : {NA,NB}pk(A) “Here is your nonce NA. Since I could
read it, I must be Bob. I also have a
challenge NB for you.”

3. A→ B : {NB}pk(B) “You sent me NB. Since only Alice can
read this and I sent it back, I must be
Alice.”

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 40 of 76

Formalizing Security Protocols: An Example

How not to lose against a grandmaster in chess

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 41 of 76

Formalizing Security Protocols: An Example

Man-in-the-middle attack

NSPK (1978):
1. A→ B : {NA,A}pk(B)

2. B → A : {NA,NB}pk(A)

3. A→ B : {NB}pk(B)

Attack (Lowe 1996):

1. a→ i : {na, a}pk(i)

1.′ i(a)→ b : {na, a}pk(b)

2.′ b → i(a) : {na, nb}pk(a)

2. i → a : {na, nb}pk(a)

3. a→ i : {nb}pk(i)

3.′ i(a)→ b : {nb}pk(b)

Property that “b authenticates a” is violated:
b believes to be talking to a, where he is in fact talking to i .

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 42 of 76

Formalizing Security Protocols: An Example

What went wrong?

• Problem in step 2.

B → A : {NA,NB}pk(A)

This message does not say where it comes from!
(A cannot check her assumption on partner)

• Agent B should also give his name: {NA,NB,B}pk(A).
Known as Lowe’s Fix.

• Is the improved version now correct?

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 43 of 76

Protocol attacks

Outline

1 Motivation

2 Building a key establishment protocol

3 Formalizing Security Protocols: An Example

4 Protocol attacks

5 Outlook on lectures on security protocols

6 Formal Models

7 Protocol Specification Languages

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 44 of 76

Protocol attacks

Types of protocol attacks

• Man-in-the-middle attack: a↔ i ↔ b.

• Replay (or freshness) attack: reuse parts of previous messages.

• Masquerading attack: pretend to be another principal.

• Reflection attack: send transmitted information back to
originator

• Oracle attack: take advantage of normal protocol responses as
encryption and decryption “services”.

• Binding attack: using messages in a different context/for a
different purpose than originally intended.

• Type flaw attack: substitute a different type of message field.

Note that these attack types are not formally defined and there may
be overlaps between them.

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 45 of 76

Protocol attacks

Diffie-Hellman: man-in-the-middle attack

• Textbook Diffie-Hellman can be attacked:

1. a→ i(b) : exp(g , x)
1.′ i(a)→ b : exp(g , z)
2.′ b → i(a) : exp(g , y)

2. i(b)→ a : exp(g , z)

• a believes to share key exp(exp(g , z), x) with b.

• b believes to share key exp(exp(g , z), y) with a.

• The adversary knows both keys.

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 46 of 76

Protocol attacks

Diffie-Hellman: man-in-the-middle attack

• A “half” man-in-the-middle attack is possible, too:

1. a→ i(b) : exp(g , x)
2. i(b)→ a : exp(g , z)

• Countermeasure: authenticate the half-keys, e.g., with digital
signatures:

1. A→ B : {exp(g ,X)}sk(A)

2. B → A : {exp(g ,Y)}sk(B)

• Many protocols are based on Diffie-Hellman, which is not a bad
idea!

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 47 of 76

Protocol attacks

Example of a reflection attack

This challenge-response authentication protocol

M1. A→ B : {|NA|}k(A,B)

M2. B → A : {|NA + 1|}k(A,B)

admits a reflection attack (with ‘oracle’):

M1.1. a→ i(b) : {|na|}k(a,b)

M2.1. i(b)→ a : {|na|}k(a,b)

M2.2. a→ i(b) : {|na + 1|}k(a,b)

M1.2. i(b)→ a : {|na + 1|}k(a,b)

a works on behalf of the adversary: a acts as an ‘oracle’, since she
provides the correct answer to her own question.
a believes (at least) that b is operational, while b may no longer exist.
Fix: add A’s name to message M1 or use different keys for each
direction (i.e., k(a, b) 6= k(b, a)).

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 48 of 76

Protocol attacks

Example of a reflection attack

This challenge-response authentication protocol

M1. A→ B : {|NA|}k(A,B)

M2. B → A : {|NA + 1|}k(A,B)

admits a reflection attack (with ‘oracle’):

M1.1. a→ i(b) : {|na|}k(a,b)

M2.1. i(b)→ a : {|na|}k(a,b)

M2.2. a→ i(b) : {|na + 1|}k(a,b)

M1.2. i(b)→ a : {|na + 1|}k(a,b)

a works on behalf of the adversary: a acts as an ‘oracle’, since she
provides the correct answer to her own question.
a believes (at least) that b is operational, while b may no longer exist.
Fix: add A’s name to message M1 or use different keys for each
direction (i.e., k(a, b) 6= k(b, a)).

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 48 of 76

Protocol attacks

Example of a reflection attack

Reflection attack (with ‘oracle’):

M1.1. a→ i(b) : {|na|}k(a,b)

M2.1. i(b)→ a : {|na|}k(a,b)

M2.2. a→ i(b) : {|na + 1|}k(a,b)

M1.2. i(b)→ a : {|na + 1|}k(a,b)

This attack requires that a executes several protocol runs in parallel.

Assumption (Threat Assumption 5)

The adversary may start any number of parallel protocol runs between
any principals including different runs involving the same principals
and with principals taking the same or different protocol roles.

Hence, our formal protocol model will allow for an unbounded
number of protocol runs of arbitrary roles and with arbitrary
participating principals.

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 49 of 76

Protocol attacks

Type flaw attacks

• A message consists of a sequence of submessages.
Examples: a principal’s name, a nonce, a key, ...

• Real messages are bit strings without type information.

1011 0110 0010 1110 0011 0111 1010 0000

• Type flaw is when A→ B : M and B accepts M as valid but
parses it differently. I.e., B interprets the bits differently than A.

• Let’s consider a couple examples.

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 50 of 76

Protocol attacks

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 51 of 76

Protocol attacks

The Otway-Rees protocol

Server-based protocol providing authenticated key distribution (with
key authentication and key freshness) but without entity
authentication or key confirmation.

M1. A→ B : M,A,B, {|NA,M,A,B|}k(A,S)

M2. B → S : M,A,B, {|NA,M,A,B|}k(A,S), {|NB,M,A,B|}k(B,S)

M3. S → B : M, {|NA,KAB |}k(A,S), {|NB,KAB |}k(B,S)

M4. B → A : M, {|NA,KAB |}k(A,S)

where server keys already known and M is a session id (e.g., an
integer).

Why should(n’t) it have the above properties?

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 52 of 76

Protocol attacks

Type flaw attack on the Otway-Rees protocol

M1. A→ B : M,A,B, {|NA,M,A,B|}k(A,S)

M2. B → S : M,A,B, {|NA,M,A,B|}k(A,S), {|NB,M,A,B|}k(B,S)

M3. S → B : M, {|NA,KAB |}k(A,S), {|NB,KAB |}k(B,S)

M4. B → A : M, {|NA,KAB |}k(A,S)

• Suppose |M,A,B| = |KAB |,
e.g., M is 32 bits, A and B are 16
bits, and KAB is 64 bits.

M

Encryption

Decryption

Intended

interpretation

of sender

of receiver

Interpretation

1001101100111100 11011011 00010010

A B

Ciphertext

1001101100111100 11011011 00010010

ABK

• Attack 1 (Reflection/type-flaw): i replays parts of message 1 as
message 4 (omitting steps 2 and 3).

M1. a→ i(b) : m, a, b, {|na,m, a, b|}k(a,s)

M4. i(b)→ a : m, {|na, m, a, b︸ ︷︷ ︸
mistaken as kab

|}k(a,s)

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 53 of 76

Protocol attacks

Type flaw attack on the Otway-Rees protocol

M1. A→ B : M,A,B, {|NA,M,A,B|}k(A,S)

M2. B → S : M,A,B, {|NA,M,A,B|}k(A,S), {|NB,M,A,B|}k(B,S)

M3. S → B : M, {|NA,KAB |}k(A,S), {|NB,KAB |}k(B,S)

M4. B → A : M, {|NA,KAB |}k(A,S)

• Suppose |M,A,B| = |KAB |,
e.g., M is 32 bits, A and B are 16
bits, and KAB is 64 bits.

M

Encryption

Decryption

Intended

interpretation

of sender

of receiver

Interpretation

1001101100111100 11011011 00010010

A B

Ciphertext

1001101100111100 11011011 00010010

ABK

• Attack 1 (Reflection/type-flaw): i replays parts of message 1 as
message 4 (omitting steps 2 and 3).

M1. a→ i(b) : m, a, b, {|na,m, a, b|}k(a,s)

M4. i(b)→ a : m, {|na, m, a, b︸ ︷︷ ︸
mistaken as kab

|}k(a,s)

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 53 of 76

Protocol attacks

Type flaw attack on the Otway-Rees protocol (cont.)

M1. A→ B : M,A,B, {|NA,M,A,B|}k(A,S)

M2. B → S : M,A,B, {|NA,M,A,B|}k(A,S), {|NB,M,A,B|}k(B,S)

M3. S → B : M, {|NA,KAB |}k(A,S), {|NB,KAB |}k(B,S)

M4. B → A : M, {|NA,KAB |}k(A,S)

Attack 2: The adversary can play the role of S in M2 and M3 by
reflecting the encrypted components of M2 back to B. Namely:

M1. a→ b : m, a, b, {|na,m, a, b|}k(a,s)

M2. b → i(s) : m, a, b, {|na,m, a, b|}k(a,s), {|nb,m, a, b|}k(b,s)

M3. i(s)→ b : m, {|na,m, a, b|}k(a,s), {|nb,m, a, b|}k(b,s)

M4. b → a : m, {|na,m, a, b|}k(a,s)

⇒ a and b accept wrong key and i can decrypt their subsequent
communication! So key authentication (and secrecy) fails!

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 54 of 76

Protocol attacks

Type flaw attack on the Otway-Rees protocol (cont.)

M1. A→ B : M,A,B, {|NA,M,A,B|}k(A,S)

M2. B → S : M,A,B, {|NA,M,A,B|}k(A,S), {|NB,M,A,B|}k(B,S)

M3. S → B : M, {|NA,KAB |}k(A,S), {|NB,KAB |}k(B,S)

M4. B → A : M, {|NA,KAB |}k(A,S)

Attack 2: The adversary can play the role of S in M2 and M3 by
reflecting the encrypted components of M2 back to B. Namely:

M1. a→ b : m, a, b, {|na,m, a, b|}k(a,s)

M2. b → i(s) : m, a, b, {|na,m, a, b|}k(a,s), {|nb,m, a, b|}k(b,s)

M3. i(s)→ b : m, {|na,m, a, b|}k(a,s), {|nb,m, a, b|}k(b,s)

M4. b → a : m, {|na,m, a, b|}k(a,s)

⇒ a and b accept wrong key and i can decrypt their subsequent
communication! So key authentication (and secrecy) fails!

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 54 of 76

Protocol attacks

Prudent engineering of security protocols

• Principles proposed by Abadi and Needham (1994, 1995):
F Every message should say what it means.
F Specify clear conditions for a message to be acted on.
F Mention names explicitly if they are essential to the meaning.
F Be clear as to why encryption is being done: confidentiality,

message authentication, binding of messages, ...
e.g., {X ,Y }sk(K) versus {X}sk(K), {Y }sk(K)

F Be clear on what properties you are assuming.
F Beware of clock variations (for timestamps).
F ... and more ...

• Good advice, but
F Is the protocol guaranteed to be secure then?
F Is it optimal and/or minimal then?
F Have you considered all types of attacks?

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 55 of 76

Outlook on lectures on security protocols

Outline

1 Motivation

2 Building a key establishment protocol

3 Formalizing Security Protocols: An Example

4 Protocol attacks

5 Outlook on lectures on security protocols

6 Formal Models

7 Protocol Specification Languages

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 56 of 76

Outlook on lectures on security protocols

Formal modeling and analysis of protocols

Goal: formally model protocols and their properties and provide a
mathematically sound means for reasoning about these models.

Basis: suitable abstraction of protocols:

⇒

Analysis: with formal methods based on mathematics and logic.

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 57 of 76

Outlook on lectures on security protocols

Formal analysis of security protocols

interleaving trace models
state−based models

Cryptographically faithful proofs

Probabilistic cryptographic view

Dolev−Yao
(perfect cryptography)

Security Protocol Analysis

AutomaticDeductive

inductive proofs

Computational ModelsFormal Models

Bounded Session Unbounded Session

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 58 of 76

Outlook on lectures on security protocols

Formal modeling of security protocols

Alice&BoB

Syntax

Alice&Bob

Semantics

Roles

Syntax

Roles

Semantics

Security protocol models

• Preliminaries: Term rewriting
• Syntax: Alice&Bob (A→ B : M) and role-based (send & receive

rules)
• Dolev-Yao adversary: message derivation

Security properties

• Semantics: transition system, event traces
• Security Goals: Secrey, authentication

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 59 of 76

Outlook on lectures on security protocols

Syntax and semantics of security protocols

Syntax

• Fundamental event is communication between principals.
• Alice&Bob: protocol is a sequence of A&B events: A→ B : M.
• Role-based: protocol is a set of roles, each role is a sequence of

send and receive rules.

Semantics

• Semantics of a role-based specification is a transition system.
• Threads are executing role instances; they keep a local store of

received messages.
• Trace: records past events (send, receive, ...)
• Send rule: thread passes a message to adversary (i.e., network).
• Receive rule: thread obtains an adversary-derivable message.
• Alice&Bob protocol specifications: meaning defined in terms of

translation to role-based specifications.

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 60 of 76

Outlook on lectures on security protocols

Why is security protocol analysis difficult?

Infinite state space for several reasons:

• Messages: adversary can produce messages of arbitrary size
• Sessions: unbounded number of parallel sessions
• Nonces: unbounded number of nonces (if sessions unbounded)

Undecidability

• secrecy problem for security protocols is undecidable
(Even & Goldreich, 1983)
• even if the number of nonces or the message size is bounded

Approaches that work well in practice

• symbolic analysis methods: avoid state enumeration
• sophisticated search strategies to avoid non-termination
• abstraction techniques: over-approximate reachable states

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 61 of 76

Outlook on lectures on security protocols

Summary

• Security protocols can achieve properties that cryptographic
primitives alone cannot offer, e.g., authentication, freshness, ...

• A protocol without explicit goals and assumptions is useless.

• Even three-liners show how difficult the art of correct design is.

• Protocol without a proof of its properties is probably wrong.

• Formal modeling and analysis of protocols is required.
Formal analysis is non-trivial (even assuming perfect
cryptography).

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 62 of 76

Formal Models

Outline

1 Motivation

2 Building a key establishment protocol

3 Formalizing Security Protocols: An Example

4 Protocol attacks

5 Outlook on lectures on security protocols

6 Formal Models

7 Protocol Specification Languages

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 63 of 76

Formal Models

Real-world protocol standards: ISO/IEC 9798

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 64 of 76

Formal Models

Real-world protocol specifications: IKE RFC

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 65 of 76

Formal Models

Real-world protocol specifications: IKE RFC

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 66 of 76

Formal Models

What are formal models?

• A language is formal when it has a well-defined syntax and
semantics. Additionally there is often a deductive system for
determining the truth of statements.

• Examples:

propositional logic, first-order logic.

• A model (or construction) is formal when it is specified in a
formal language.

• Standard protocol notation is not formal.

• We will see how to formalize such notations.

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 67 of 76

Formal Models

What are formal models?

• A language is formal when it has a well-defined syntax and
semantics. Additionally there is often a deductive system for
determining the truth of statements.

• Examples: propositional logic, first-order logic.

• A model (or construction) is formal when it is specified in a
formal language.

• Standard protocol notation is not formal.

• We will see how to formalize such notations.

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 67 of 76

Formal Models

Formal modeling and analysis of protocols

Goal: formally model protocols and their properties and provide a
mathematically sound means for reasoning about these models.

Basis: suitable abstraction of protocols.

Analysis: with formal methods based on mathematics and logic.

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 68 of 76

Formal Models

Formal Methods

system
specification

security
properties

proof

How does the
system operate?

What shall
be achieved?

Does the system meet
its requirements?

satisfies

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 69 of 76

Formal Models

From protocol sequence charts to protocol execution

Initiator

Protocol specification Protocol execution

Responder

Alice as
initiator

Alice as
initiator

Bob as
initiator

Bob as
responder

Charlie as
responder

request

{| m |}k

cryptographic primitives

communication model

agent model

Network

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 70 of 76

Protocol Specification Languages

Outline

1 Motivation

2 Building a key establishment protocol

3 Formalizing Security Protocols: An Example

4 Protocol attacks

5 Outlook on lectures on security protocols

6 Formal Models

7 Protocol Specification Languages

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 71 of 76

Protocol Specification Languages

A (Semi-)Formal Alice & Bob Language

Protocol : NSPK
Types :
Agent A,B;
Number NA,NB;
Function pk;

Knowledge :
A : A,B, pk, sk(A);
B : B, pk, sk(B);

Actions :
A → B : {NA,A}pk(B)

B → A : {NA,NB}pk(A)

A → B : {NB}pk(B)

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 72 of 76

Protocol Specification Languages

A (Semi-)Formal Alice & Bob Language

Protocol : NSPK

Types :
Agent A,B;
Number NA,NB;
Function pk;

Knowledge :
A : A,B, pk, sk(A);
B : B, pk, sk(B);

Actions :
A → B : {NA,A}pk(B)

B → A : {NA,NB}pk(A)

A → B : {NB}pk(B)

First, let’s give it a name.

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 72 of 76

Protocol Specification Languages

A (Semi-)Formal Alice & Bob Language

Protocol : NSPK
Types :
Agent A,B;
Number NA,NB;
Function pk;

Knowledge :
A : A,B, pk, sk(A);
B : B, pk, sk(B);

Actions :
A → B : {NA,A}pk(B)

B → A : {NA,NB}pk(A)

A → B : {NB}pk(B)

Specify the types of all identifiers.
NB: we do not necessarily consider types in the analysis!

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 72 of 76

Protocol Specification Languages

A (Semi-)Formal Alice & Bob Language

Protocol : NSPK
Types :
Agent A,B;
Number NA,NB;
Function pk;

Knowledge :
A : A,B, pk, sk(A);
B : B, pk, sk(B);

Actions :
A → B : {NA,A}pk(B)

B → A : {NA,NB}pk(A)

A → B : {NB}pk(B)

Initial knowledge of each role uses only variables of type Agent.
Every other variable: freshly created by the agent who first uses it.

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 72 of 76

Protocol Specification Languages

Message Sequence Charts

A B

{NA, A}pk(B)

{NA,NB}pk(A)

{NB}pk(B)

msc NSPK

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 73 of 76

Protocol Specification Languages

Towards the Meaning of an AnB Specification

Split a message sequence chart into single roles
(aka chords, symbolic strands, role scripts):

A B

{NA, A}pk(B)

{NA,NB}pk(A)

{NB}pk(B)

msc NSPK

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 74 of 76

Protocol Specification Languages

Towards the Meaning of an AnB Specification

Split a message sequence chart into single roles
(aka chords, symbolic strands, role scripts):

A

{NA, A}pk(B)

{NA,NB}pk(A)

{NB}pk(B)

msc NSPK A

B

{NA, A}pk(B)

{NA, NB}pk(A)

{NB}pk(B)

msc NSPK B

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 74 of 76

Protocol Specification Languages

Towards the Meaning of an AnB Specification

Not trivial for some protocols:

A B

h(N)

{|h(N)|}k(A,B)

{|N |}k(A,B)

msc Protocol using hashing

Here, k(A,B) is a shared key of A and B and N is fresh.

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 75 of 76

Protocol Specification Languages

Towards the Meaning of an AnB Specification

Not trivial for some protocols:

A

h(N)

{|h(N)|}k(A,B)

{|N |}k(A,B)

msc Protocol using
hashing (role A)

B

h(N)

{|h(N)|}k(A,B)

{|N |}k(A,B)

msc Protocol using
hashing (role B)

This is wrong: B cannot check the format of the first message...
before receiving the third!

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 75 of 76

Protocol Specification Languages

Bibliography

• Mart́ın Abadi and Roger Needham. Prudent Engineering Practice for
Cryptographic Protocols. IEEE Transactions on Software Engineering,
22(1):2-15, 1996.

• Ross Anderson and Roger Needham. Programming Satan’s Computer. In
Computer Science Today, vol. 1000 of LNCS, p. 426-440. Springer, 1995.

• Cas Cremers and Sjouke Mauw. Operational Semantics and Verification of
Security Protocols. Springer, 2012.

• John Clark and Jeremy Jacob. A survey of authentication protocol literature,
1997. http://www.cs.york.ac.uk/˜jac/PublishedPapers/reviewV1 1997.pdf

• Catherine Meadows. Open Issues in Formal Methods for Cryptographic
Protocol Analysis. Proceedings of DISCEX’00, 2000.

R. Sasse Tamarin Day 1, v.1 Jan 25, 2016 76 of 76

http://www.cs.york.ac.uk/~{}jac/PublishedPapers/reviewV1_1997.pdf

	Motivation
	Building a key establishment protocol
	Formalizing Security Protocols: An Example
	Protocol attacks
	Outlook on lectures on security protocols
	Formal Models
	Protocol Specification Languages

