
Verifying Security Protocols in Tamarin

Ralf Sasse

Institute of Information Security
ETH Zurich

Tamarin Day 3, v.1

Jan 27, 2016

Roadmap

1 Protocol Security Goals

2 Secrecy

3 Authentication

4 Key-related properties

5 Automated Verification

6 Decidability

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 2 of 67

Protocol Security Goals

Outline

1 Protocol Security Goals

2 Secrecy

3 Authentication

4 Key-related properties

5 Automated Verification

6 Decidability

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 3 of 67

Protocol Security Goals

Protocol Goals

Goals what the protocol should achieve, e.g.,

• Authenticate messages, binding them to their originator

• Ensure timeliness of messages (recent, fresh, ...)

• Guarantee secrecy of certain items (e.g., generated keys)

Most common goals

• secrecy

• authentication (many different forms)

Other goals

• anonymity, non-repudiation (of receipt, submission, delivery), fairness,
availability, sender invariance, ...

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 4 of 67

Protocol Security Goals

Protocol Goals

Goals what the protocol should achieve, e.g.,

• Authenticate messages, binding them to their originator

• Ensure timeliness of messages (recent, fresh, ...)

• Guarantee secrecy of certain items (e.g., generated keys)

Most common goals

• secrecy

• authentication (many different forms)

Other goals

• anonymity, non-repudiation (of receipt, submission, delivery), fairness,
availability, sender invariance, ...

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 4 of 67

Protocol Security Goals

Protocol Properties and Correctness
What does it mean?

Properties

• Semantics of a security protocol P is a set of traces ‖P‖ = traces(P).
(Traces may be finite or infinite, state- or event-based.)

• Security goal / property φ also denotes a set of traces ‖φ‖.

Correctness has an exact meaning

• Protocol P satisfies property φ, written P |= φ, iff

‖P‖ ⊆ ‖φ‖

• Attack traces are those in

‖P‖ − ‖φ‖

• Every correctness statement is either true or false.

• Later: how do we find attacks or prove correctness?
Attacks.

Ok, no attacks.

Ok. φP

P

φ

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 5 of 67

Protocol Security Goals

Protocol Properties and Correctness
What does it mean?

Properties

• Semantics of a security protocol P is a set of traces ‖P‖ = traces(P).
(Traces may be finite or infinite, state- or event-based.)

• Security goal / property φ also denotes a set of traces ‖φ‖.

Correctness has an exact meaning

• Protocol P satisfies property φ, written P |= φ, iff

‖P‖ ⊆ ‖φ‖

• Attack traces are those in

‖P‖ − ‖φ‖

• Every correctness statement is either true or false.

• Later: how do we find attacks or prove correctness?
Attacks.

Ok, no attacks.

Ok. φP

P

φ

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 5 of 67

Protocol Security Goals

Formalizing Security Properties
Two approaches

Direct formulation

• Formulate property φ directly in terms of send and receive events
occurring in protocol traces, i.e., as a set of (or predicate on) traces.

• Drawback: standard properties like secrecy and authentication become
highly protocol-dependent, since they need to refer to the concrete
protocol messages.

Protocol instrumentation

• Idea: insert special claim events into the protocol roles:

Claim claimtype(R, t)

where R is the executing role, claimtype indicates the type of claim,
and t is a message term.

• Serve as interface to express properties independently of protocol.

• Example: Claim secret(A,NA) claims that NA is a secret for role A,
i.e., not known to the intruder.

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 6 of 67

Protocol Security Goals

Formalizing Security Properties
Two approaches

Direct formulation

• Formulate property φ directly in terms of send and receive events
occurring in protocol traces, i.e., as a set of (or predicate on) traces.

• Drawback: standard properties like secrecy and authentication become
highly protocol-dependent, since they need to refer to the concrete
protocol messages.

Protocol instrumentation

• Idea: insert special claim events into the protocol roles:

Claim claimtype(R, t)

where R is the executing role, claimtype indicates the type of claim,
and t is a message term.

• Serve as interface to express properties independently of protocol.

• Example: Claim secret(A,NA) claims that NA is a secret for role A,
i.e., not known to the intruder.

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 6 of 67

Protocol Security Goals

Claim Events

Claim events are part of the protocol rules as actions.

Properties of claim events

• Their only effect is to record facts or claims in the protocol trace.

• They cannot be observed, modified, or generated by the intruder.

Expressing properties using claim events

• Properties of traces tr are expressed in terms of claim events and other
actions (e.g., adversary knowledge K) occuring in tr .

• Properties are formulated from the point of view of a given role, thus
yielding security guarantees for that role.

• We concentrate on secrecy and various forms of authentication, though
the approach is not limited to these properties.

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 7 of 67

Protocol Security Goals

Claim Events

Claim events are part of the protocol rules as actions.

Properties of claim events

• Their only effect is to record facts or claims in the protocol trace.

• They cannot be observed, modified, or generated by the intruder.

Expressing properties using claim events

• Properties of traces tr are expressed in terms of claim events and other
actions (e.g., adversary knowledge K) occuring in tr .

• Properties are formulated from the point of view of a given role, thus
yielding security guarantees for that role.

• We concentrate on secrecy and various forms of authentication, though
the approach is not limited to these properties.

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 7 of 67

Secrecy

Outline

1 Protocol Security Goals

2 Secrecy

3 Authentication

4 Key-related properties

5 Automated Verification

6 Decidability

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 8 of 67

Secrecy

Role Instrumentation for Secrecy

Definition (Secrecy, informally)

The intruder cannot discover the data (e.g., key,
nonce, etc.) that is intended to be secret.

Role instrumentation

• Insert the claim event Claim secret(A,M) into
role A to claim that the message M used in the
run remains secret.

• Position: At the end of the role.

• For instance, in NSPK, the nonces na and nb
should remain secret.

Note: In the graphs, where the executing role is clear from

the context, we abbreviate Claim claimtype(A, t) to

claimtype(t) inside a hexagon.

A

M1

M2

Mn

msc Secrecy claim

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 9 of 67

Secrecy

Formalization of Secrecy

Definition (Secrecy, first attempt)

The secrecy property consists of all traces tr satisfying

∀A,M, i . Claim secret(A,M)@i ⇒ ¬(∃j .K(M)@j)

• Let tr = tr1; tr2; . . . ; trk . We write x@k as a shorthand for x ∈ trk .

• Can only require M to remain secret if A runs the protocol with another
honest agent, i.e.,

• Trivially broken whenever A or B is instantiated with a compromised
agent, since then the adversary rightfully knows M.

• This definition is fine for a passive adversary, who only observes network
traffic, but does not act as a protocol participant.

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 10 of 67

Secrecy

Formalization of Secrecy

Definition (Secrecy, first attempt)

The secrecy property consists of all traces tr satisfying

∀A,M, i . Claim secret(A,M)@i ⇒ ¬(∃j .K(M)@j)

• Let tr = tr1; tr2; . . . ; trk . We write x@k as a shorthand for x ∈ trk .

• Can only require M to remain secret if A runs the protocol with another
honest agent, i.e.,

• Trivially broken whenever A or B is instantiated with a compromised
agent, since then the adversary rightfully knows M.

• This definition is fine for a passive adversary, who only observes network
traffic, but does not act as a protocol participant.

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 10 of 67

Secrecy

Compromised Agent

Definition (Compromised Agent)

A compromised agent is under adversary control, i.e., sharing all its
information with the adversary and participating in protocols upon its
direction. We model this by having the agent give its initial secret
information to the adversary, which can then mimic the agent’s actions.

We note the fact that an agent is compromised by a Rev event in the trace,
attached to the rule that passes its initial secrets to the adversary (compare
to the creation rule):

[Ltk(A, skA)]
Rev(A)−−−−→ [Ltk(A, skA),Out(skA)]

Exercise: convince yourself that, given the agent’s secret, the adversary is
capable of performing all of the agent’s send and receive steps.

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 11 of 67

Secrecy

Formalization of Secrecy

Definition (Honesty)

An agent A is honest in a trace tr when Rev(A) /∈ tr .
When making a claim in a rule action, all parties B that are expected to be
honest need to be listed with a Honest(B) action in that rule.

Definition (Secrecy)

The secrecy property consists of all traces tr satisfying

∀A M i . (Claim secret(A,M)@i)

⇒ (¬(∃j .K(M)@j) ∨ (∃B j .Rev(B)@j ∧ Honest(B)@i))

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 12 of 67

Secrecy

Formalization of Secrecy

Definition (Honesty)

An agent A is honest in a trace tr when Rev(A) /∈ tr .
When making a claim in a rule action, all parties B that are expected to be
honest need to be listed with a Honest(B) action in that rule.

Definition (Secrecy)

The secrecy property consists of all traces tr satisfying

∀A M i . (Claim secret(A,M)@i)

⇒ (¬(∃j .K(M)@j) ∨ (∃B j .Rev(B)@j ∧ Honest(B)@i))

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 12 of 67

Secrecy

Secrecy Example #1

A B

{|NA|}k(A,B)

secret(NA) secret(NA)

msc Secrecy for Symmetric Encryption

• This is fine: secrecy holds for both A and B.

• We omit the obvious annotations Honest(A),Honest(B) in message
sequence charts for 2-party protocols.

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 13 of 67

Secrecy

Secrecy Example #1

A B

{|NA|}k(A,B)

secret(NA) secret(NA)

msc Secrecy for Symmetric Encryption

• This is fine: secrecy holds for both A and B.

• We omit the obvious annotations Honest(A),Honest(B) in message
sequence charts for 2-party protocols.

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 13 of 67

Secrecy

Secrecy Example #1

A B

{|NA|}k(A,B)

secret(NA) secret(NA)

msc Secrecy for Symmetric Encryption

• This is fine: secrecy holds for both A and B.

• We omit the obvious annotations Honest(A),Honest(B) in message
sequence charts for 2-party protocols.

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 13 of 67

Secrecy

Secrecy Example #2

A B

{A,NA}pk(B)

secret(NA)

msc Secrecy for Asymmetric Encryption

• Secrecy holds for A: she knows that only B can decrypt message.

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 14 of 67

Secrecy

Secrecy Example #2

A B

{A,NA}pk(B)

secret(NA)

msc Secrecy for Asymmetric Encryption

• Secrecy holds for A: she knows that only B can decrypt message.

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 14 of 67

Secrecy

Secrecy Example #2

A B

{A,NA}pk(B)

secret(NA) secret(NA)

msc Secrecy for Asymmetric Encryption

• Secrecy fails for B: he does not know who encrypted message!

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 15 of 67

Authentication

Outline

1 Protocol Security Goals

2 Secrecy

3 Authentication

4 Key-related properties

5 Automated Verification

6 Decidability

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 16 of 67

Authentication

Authentication

Which authentication are you talking about?

• No unique definition of authentication, but a variety of different forms.

• Considerable effort has been devoted to specifying and classifying,
semi-formally or formally, different forms of authentication (e.g., by
Cervesato/Syverson, Clark/Jacob, Gollmann, Lowe, Cremers et al.).

Examples

• ping authentication, aliveness, weak agreement, non-injective agreement,
injective agreement, weak and strong authentication, synchronization,
and matching histories.

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 17 of 67

Authentication

A Perfect (Picture of the) World

A B

{NA, A}pk(B)

{NA, NB}pk(A)

{NB}pk(B)

msc Needham-Schroeder protocol

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 18 of 67

Authentication

A More Realistic Picture

�
2

3

��
�

�����

�
2

3

��
�

�����
��

�

�

�

�

�

�
2

3

��

��

��

�

�
2

3

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 19 of 67

Authentication

Failed Authentication

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 20 of 67

Authentication

Successful Authentication

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 21 of 67

Authentication

A Hierarchy of Authentication Specifications (1)
[Gavin Lowe, 1997]

Gavin Lowe has defined the following hierarchy of increasingly stronger
authentication properties1:

Aliveness A protocol guarantees to an agent a in role A aliveness of another
agent b if, whenever a completes a run of the protocol, apparently with b
in role B, then b has previously been running the protocol.

Weak agreement A protocol guarantees to an agent a in role A weak
agreement with another agent b if, whenever agent a completes a run of
the protocol, apparently with b in role B, then b has previously been
running the protocol, apparently with a.

1Terminology and notation slightly adapted to our setting.
R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 22 of 67

Authentication

A Hierarchy of Authentication Specifications (2)
[Gavin Lowe, 1997]

Non-injective agreement A protocol guarantees to an agent a in role A
non-injective agreement with an agent b in role B on a message M if,
whenever a completes a run of the protocol, apparently with b in role B,
then b has previously been running the protocol, apparently with a, and b
was acting in role B in his run, and the two principals agreed on the
message M.

Injective agreement is non-injective agreement where additionally each run
of agent a in role A corresponds to a unique run of agent b.

Also versions including recentness: insist that B’s run was recent (e.g., within
t time units).

These are quite complex properties. How can we formalize them?

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 23 of 67

Authentication

A Hierarchy of Authentication Specifications (2)
[Gavin Lowe, 1997]

Non-injective agreement A protocol guarantees to an agent a in role A
non-injective agreement with an agent b in role B on a message M if,
whenever a completes a run of the protocol, apparently with b in role B,
then b has previously been running the protocol, apparently with a, and b
was acting in role B in his run, and the two principals agreed on the
message M.

Injective agreement is non-injective agreement where additionally each run
of agent a in role A corresponds to a unique run of agent b.

Also versions including recentness: insist that B’s run was recent (e.g., within
t time units).

These are quite complex properties. How can we formalize them?

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 23 of 67

Authentication

Role Instrumentation for Authentication

We use two claims to express that role A authenticates role B on t:

In role A:

• Insert a commit claim event
Claim commit(A,B, t).

• Position: after A can construct t.
Typically, at end of A’s role.

In role B:

• Insert a running claim event
Claim running(B,A, u).

• Term u is B’s view of t.

• Position: after B can construct u
and causally preceding
Claim commit(A,B, t).

A B

running(A, u)

Mi

commit(B, t)

msc Authentication claim

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 24 of 67

Authentication

Formalizing Authentication

Definition (Non-injective agreement)

The property AgreementNI (A,B, t) consists of all traces satisfying

∀a b t i . Claim commit(a, b, 〈A,B, t〉)@i
⇒ (∃j .Claim running(b, a, 〈A,B, t〉)@j)
∨(∃X r .Rev(X)@r ∧ Honest(X)@i)

• Whenever a commit claim is made with honest agents a and b, then the
peer b must be running with the same parameter t, or the adversary has
compromised at least one of the two agents.

Faithfulness What about the ordering of the claims in the trace? This holds
even if the running claim succeeds the commit claim!

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 25 of 67

Authentication

Formalizing Authentication

Definition (Non-injective agreement)

The property AgreementNI (A,B, t) consists of all traces satisfying

∀a b t i . Claim commit(a, b, 〈A,B, t〉)@i
⇒ (∃j .Claim running(b, a, 〈A,B, t〉)@j)
∨(∃X r .Rev(X)@r ∧ Honest(X)@i)

• Whenever a commit claim is made with honest agents a and b, then the
peer b must be running with the same parameter t, or the adversary has
compromised at least one of the two agents.

Faithfulness What about the ordering of the claims in the trace? This holds
even if the running claim succeeds the commit claim!

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 25 of 67

Authentication

Example: NSL Protocol (1/2)

A B

{NA, A}pk(B)

running(A,NA, NB)

{NA, NB , B}pk(A)

commit(B,NA, NB)

{NB}pk(B)

msc NSL, instrumented for A to agree with B on NA, NB

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 26 of 67

Authentication

Example: NSL Protocol (2/2)

A B

{NA, A}pk(B)

{NA, NB}pk(A)

running(B,NA, NB)

{NB}pk(B)

commit(A,NA, NB)

msc NSL, instrumented for B to agree with A on NA, NB

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 27 of 67

Authentication

Role Instrumentation for Authentication (cont.)

A B C

running(A, u)

Mj

Mi

commit(C, t)

msc Multi-hop authentication claim

Event causality in multi-hop authentication claims: The running event must
causally precede the commit event and the messages t and u must be known
at the position of the claim event in the respective role.

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 28 of 67

Authentication

Example: Yahalom Protocol (1/3)

Initiator

A

Responder

B

Server

S

A, NA

B, {|A, NA, NB |}k(B,S)

{|B, KAB , NA, NB |}k(A,S), {|A, KAB |}k(B,S)

{|A, KAB |}k(B,S), {|NB |}KAB

msc Yahalom protocol

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 29 of 67

Authentication

Example: Yahalom Protocol (2/3)

Initiator

A

Responder

B

Server

S

A, NA

B, {|A, NA, NB |}k(B,S)

{|B,KAB , NA, NB |}k(A,S), {|A, KAB |}k(B,S)

running(B,NA, NB , KAB)

{|A, KAB |}k(B,S), {|NB |}KAB

commit(A, NA, NB , KAB)

msc Yahalom protocol (instrumented for responder authenticating initiator on NA, NB , KAB)

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 30 of 67

Authentication

Example: Yahalom Protocol (3/3)

Initiator

A

Responder

B

Server

S

A, NA

running(A, NA, NB)

B, {|A, NA, NB |}k(B,S)

{|B,KAB , NA, NB |}k(A,S), {|A, KAB |}k(B,S)

{|A, KAB |}k(B,S), {|NB |}KAB

commit(B,NA, NB)

msc Yahalom protocol (instrumented for initiator authenticating responder on NA, NB)

Note: agreement for A on KAB is not possible, since B gets KAB after A.

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 31 of 67

Authentication

Formalizing Authentication

Definition (Injective agreement)

The property Agreement(A,B, t) consists of all traces satisfying:

∀a b t i . Claim commit(a, b, 〈A,B, t〉)@i
⇒ (∃j .Claim running(b, a, 〈A,B, t〉)@j ∧ j < i

∧¬(∃a2b2i2.Claim commit(a2, b2, 〈A,B, t〉)@i2 ∧ ¬(i2 = i)))
∨(∃X r .Rev(X)@r ∧ Honest(X)@i)

Remarks

• For each commit by a in role A on the trace there is a unique matching
b executing role B.

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 32 of 67

Authentication

Failed Injective Authentication

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 33 of 67

Authentication

Successful Injective Authentication

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 34 of 67

Authentication

Injective vs Non-injective Agreement
Separating Example

Initiator

A

Responder

B

running(B, {A, B}sk(A))

{A, B}sk(A)

commit(A, {A, B}sk(A))

msc Injective vs non-injective agreement

• Non-injective agreement holds.

• Injective agreement fails, since the adversary can replay message to
several threads in responder role B.

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 35 of 67

Injective Agreement counter-example

Authentication

Formalizing Authentication
Weaker Variants

Definition (Weak agreement)

A trace tr satisfies the property WeakAgreement(A,B) iff

∀a b i . Claim commit(a, b, 〈〉)@i
⇒ (∃j .Claim running(b, a, 〈〉)@j)
∨(∃X r .Rev(X)@r ∧ Honest(X)@i)

It is sufficient that the agents agree they are communicating, it is not
required that they play the right roles. Note also the empty list of data 〈〉
that is agreed upon, i.e., none.

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 37 of 67

Authentication

Formalizing Authentication
Weaker Variants

Definition (Aliveness)

A trace tr satisfies the property Alive(A,B) iff

∀a b i . Claim commit(a, b, 〈〉)@i
⇒ (∃j id .Create B(b, id)@j ∨ Create A(b, id)@j)
∨(∃X r .Rev(X)@r ∧ Honest(X)@i)

It is neither required that the agent b, believed to instantiate role B by agent
a, really plays role B, nor that he believes to be talking to a.

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 38 of 67

Authentication

Aliveness vs Weak Agreement
Separating Example

Initiator

A

Responder

B

A, {NA}pk(B)

running(A)

NA

commit(B)

msc Aliveness vs weak agreement

• Aliveness holds: only B can have decrypted the fresh nonce NA.
• Weak agreement fails, since adversary may modify unprotected identity

A to C in first message so that B thinks he is talking to C .

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 39 of 67

Authentication

Aliveness vs Weak Agreement
Separating Example

Initiator

A

Responder

B

A, {NA}pk(B)

running(A)

NA

commit(B)

msc Aliveness vs weak agreement

• Aliveness holds: only B can have decrypted the fresh nonce NA.
• Weak agreement fails, since adversary may modify unprotected identity

A to C in first message so that B thinks he is talking to C .

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 39 of 67

Weak Agreement counter-example

Authentication

When Even Aliveness Fails ...

Initiator

A

Responder

B

{|NA|}k(A,B)

running(A)

{|NB |}k(A,B), NA

commit(B)

NB

msc Mutual authentication protocol

• Reflection attack: A may complete run without B’s participation.

• Hence, aliveness fails.

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 41 of 67

Authentication

When Even Aliveness Fails ...

Initiator

A

Responder

B

{|NA|}k(A,B)

running(A)

{|NB |}k(A,B), NA

commit(B)

NB

msc Mutual authentication protocol

• Reflection attack: A may complete run without B’s participation.

• Hence, aliveness fails.

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 41 of 67

Authentication

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 42 of 67

Key-related properties

Outline

1 Protocol Security Goals

2 Secrecy

3 Authentication

4 Key-related properties

5 Automated Verification

6 Decidability

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 43 of 67

Key-related properties

Key-related Properties

Basic key-oriented goals

• key freshness
• (implicit) key authentication: a key is only known to the communicating

agents A and B and mutually trusted parties
• key confirmation of A to B is provided if B has assurance that agent A

has possession of key K
• explicit key authentication = key authentication + key confirmation
⇒ expressible in terms of secrecy and agreement

Goals concerning compromised keys

• (perfect) forward secrecy: compromise of long-term keys of a set of
principals does not compromise the session keys established in previous
protocol runs involving those principals
• resistance to key-compromise impersonation: compromise of long-term

key of an agent A does not allow the adversary to masquerade to A as a
different principal.

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 44 of 67

Key-related properties

Key-related Properties

Basic key-oriented goals

• key freshness
• (implicit) key authentication: a key is only known to the communicating

agents A and B and mutually trusted parties
• key confirmation of A to B is provided if B has assurance that agent A

has possession of key K
• explicit key authentication = key authentication + key confirmation
⇒ expressible in terms of secrecy and agreement

Goals concerning compromised keys

• (perfect) forward secrecy: compromise of long-term keys of a set of
principals does not compromise the session keys established in previous
protocol runs involving those principals
• resistance to key-compromise impersonation: compromise of long-term

key of an agent A does not allow the adversary to masquerade to A as a
different principal.

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 44 of 67

Key-related properties

Forward Secrecy: Example 1

A B

exp(g,X)

exp(g, Y), {exp(g, Y), exp(g,X), A}sk(B)

{exp(g,X), exp(g, Y), B}sk(A)

msc Modified Station-to-Station Protocol

• Signatures are used to authenticate the Diffie-Hellman public keys
exp(g ,X) and exp(g ,Y).

• Protocol provides forward secrecy: The adversary cannot derive session
key KAB = exp(exp(g ,X),Y) by compromise of signing keys.

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 45 of 67

Key-related properties

Forward Secrecy: Example 1

A B

exp(g,X)

exp(g, Y), {exp(g, Y), exp(g,X), A}sk(B)

{exp(g,X), exp(g, Y), B}sk(A)

msc Modified Station-to-Station Protocol

• Signatures are used to authenticate the Diffie-Hellman public keys
exp(g ,X) and exp(g ,Y).

• Protocol provides forward secrecy: The adversary cannot derive session
key KAB = exp(exp(g ,X),Y) by compromise of signing keys.

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 45 of 67

Key-related properties

Forward Secrecy: Example 2

knows A,B,U, gU , gV

A

knows A,B, V, gV , gU

B

generate X generate Y

exp(g,X)

exp(g, Y)

KAB = (gY)U · (gV)X KAB = (gX)V · (gU)Y

msc Matsumoto-Takashima-Imai (MTI) A(0) Protocol

• Message exchange as in basic DH; protocol combines long-term and
ephemeral DH keys to authenticate exchanged DH public keys.

• Protocol does not provide forward secrecy: The adversary can construct
the session key KAB = gVX+UY as (gX)V · (gY)U from observed
messages and long-term private keys U and V .

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 46 of 67

Key-related properties

Forward Secrecy: Example 2

knows A,B,U, gU , gV

A

knows A,B, V, gV , gU

B

generate X generate Y

exp(g,X)

exp(g, Y)

KAB = (gY)U · (gV)X KAB = (gX)V · (gU)Y

msc Matsumoto-Takashima-Imai (MTI) A(0) Protocol

• Message exchange as in basic DH; protocol combines long-term and
ephemeral DH keys to authenticate exchanged DH public keys.

• Protocol does not provide forward secrecy: The adversary can construct
the session key KAB = gVX+UY as (gX)V · (gY)U from observed
messages and long-term private keys U and V .

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 46 of 67

Key-related properties

Forward Secrecy: Example 3

A B

(pk(KT), sk(KT))

A,NA, {pk(KT), B}sk(A)

KAB

{KAB}pk(KT), {h(KAB), A,NA}sk(B)

msc Key transport protocol providing forward secrecy

• A generates an ephemeral asymmetric key pair (pk(KT), sk(KT)).

• Protocol provides forward secrecy without using Diffie-Hellman keys:
Adversary cannot learn session key by compromise of signing keys.

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 47 of 67

Key-related properties

Forward Secrecy: Example 3

A B

(pk(KT), sk(KT))

A,NA, {pk(KT), B}sk(A)

KAB

{KAB}pk(KT), {h(KAB), A,NA}sk(B)

msc Key transport protocol providing forward secrecy

• A generates an ephemeral asymmetric key pair (pk(KT), sk(KT)).

• Protocol provides forward secrecy without using Diffie-Hellman keys:
Adversary cannot learn session key by compromise of signing keys.

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 47 of 67

Automated Verification

Outline

1 Protocol Security Goals

2 Secrecy

3 Authentication

4 Key-related properties

5 Automated Verification

6 Decidability

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 48 of 67

Automated Verification

Automated Verification and Decidability

We would like to have a program V with . . .

• Input:
F some description of a program P
F some description of a functional specification S

• Output: Yes if P satisfies S , and No otherwise.

• Optional extra: in the No case, give a counter-example, i.e. an input on
which P violates the specification.

Forget it:

Theorem (Rice)

Let S be any non-empty, proper subset of the computable functions. Then
the verification problem for S (the set of programs P that compute a
function in S) is undecidable.

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 49 of 67

Automated Verification

Automated Verification and Decidability

We would like to have a program V with . . .

• Input:
F some description of a program P
F some description of a functional specification S

• Output: Yes if P satisfies S , and No otherwise.

• Optional extra: in the No case, give a counter-example, i.e. an input on
which P violates the specification.

Forget it:

Theorem (Rice)

Let S be any non-empty, proper subset of the computable functions. Then
the verification problem for S (the set of programs P that compute a
function in S) is undecidable.

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 49 of 67

Automated Verification

The Sources of Infinity

For security protocols, the state space can be infinite for (at least) the
following reasons:

Messages The intruder can compose arbitrarily complex messages from his
knowledge, e.g., i , h(i), h(h(i)),

Sessions Any number of sessions (or threads) may be executed.

Nonces Unbounded number of fresh nonces generated.

NB: For finite-length threads (as considered in this lecture), we can have
unbounded threads with bounded nonces, but not vice versa.

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 50 of 67

Automated Verification

The Sources of Infinity

For security protocols, the state space can be infinite for (at least) the
following reasons:

Messages The intruder can compose arbitrarily complex messages from his
knowledge, e.g., i , h(i), h(h(i)),

Sessions Any number of sessions (or threads) may be executed.

Nonces Unbounded number of fresh nonces generated.

NB: For finite-length threads (as considered in this lecture), we can have
unbounded threads with bounded nonces, but not vice versa.

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 50 of 67

Automated Verification

Decidability Roadmap

Messages

Sessions

Nonces

Bounded

Bounded

Unbounded

Messages

Sessions

Nonces

Bounded

Bounded

Unbounded

Messages

Sessions

Nonces

Bounded

Bounded

Bounded

Messages

Sessions

Nonces Bounded

Unbounded

Unbounded

Messages

Sessions

Nonces

Bounded

Unbounded

Unbounded

Messages

Sessions

Nonces

Unbounded

Unbounded

Unbounded

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 51 of 67

Decidability

Outline

1 Protocol Security Goals

2 Secrecy

3 Authentication

4 Key-related properties

5 Automated Verification

6 Decidability

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 52 of 67

Decidability

Undecidability of Secrecy

• By a reduction from PCP, first shown by [Even/Goldreich 1983].

• Basic idea of the proof: we let the intruder “guess” a solution, use the
honest agents as a machine to “check” the solution, and reveal a secret
if the solution is correct.

• As an attack on secrecy is equivalent to existence of a solution, we can
use the protocol verifier to solve the PCP problem.

• However, the protocols generated for PCP are very artificial:
F They are not even executable without an intruder.
F [Comon et al. 2001]: even when restricting to executable protocols,

secrecy is undecidable.

• The proof requires unbounded messages and unbounded threads (as the
length of the solution and its check cannot be bounded).

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 53 of 67

Decidability

Undecidability of Secrecy

• By a reduction from PCP, first shown by [Even/Goldreich 1983].

• Basic idea of the proof: we let the intruder “guess” a solution, use the
honest agents as a machine to “check” the solution, and reveal a secret
if the solution is correct.

• As an attack on secrecy is equivalent to existence of a solution, we can
use the protocol verifier to solve the PCP problem.

• However, the protocols generated for PCP are very artificial:
F They are not even executable without an intruder.
F [Comon et al. 2001]: even when restricting to executable protocols,

secrecy is undecidable.

• The proof requires unbounded messages and unbounded threads (as the
length of the solution and its check cannot be bounded).

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 53 of 67

Decidability

Decidability Roadmap

Messages

Sessions

Nonces

Bounded

Bounded

Unbounded

Messages

Sessions

Nonces

Bounded

Bounded

Unbounded

Messages

Sessions

Nonces

Bounded

Bounded

Bounded

Messages

Sessions

Nonces

Bounded

Unbounded

Unbounded

Messages

Sessions

Nonces

Unbounded

Unbounded

Unbounded

Messages

Sessions

Nonces Bounded

Unbounded

Unbounded

• Secrecy is undecidable for UUB case [Even/Goldreich 1983]

• Hence also for UUU case.

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 54 of 67

Decidability

Bounding

Reduction to PCP required unbounded threads and message size.

Realistic assumptions?

Maybe real-world attacks can be modeled without unbounded threads and
message sizes.

Bound Justification
Number of threads

Usually attacks don’t involve 100 threads

Term size

Protocol checks type of incoming messages
- What about h(h(h(h(A))))?

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 55 of 67

Decidability

Bounding

Reduction to PCP required unbounded threads and message size.

Realistic assumptions?

Maybe real-world attacks can be modeled without unbounded threads and
message sizes.

Bound Justification
Number of threads Usually attacks don’t involve 100 threads
Term size

Protocol checks type of incoming messages
- What about h(h(h(h(A))))?

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 55 of 67

Decidability

Bounding

Reduction to PCP required unbounded threads and message size.

Realistic assumptions?

Maybe real-world attacks can be modeled without unbounded threads and
message sizes.

Bound Justification
Number of threads Usually attacks don’t involve 100 threads
Term size Protocol checks type of incoming messages

- What about h(h(h(h(A))))?

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 55 of 67

Decidability

Bounding

Reduction to PCP required unbounded threads and message size.

Realistic assumptions?

Maybe real-world attacks can be modeled without unbounded threads and
message sizes.

Bound Justification
Number of threads Usually attacks don’t involve 100 threads
Term size Protocol checks type of incoming messages

- What about h(h(h(h(A))))?

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 55 of 67

Decidability

Search Tree

We can consider a search tree, where

• each node is a state,

• the root node is the initial state,

• node n is a child of node m iff state n can be reached from state m by
one transition justified by a rule in our labeled transition system.

• we can check for the trace leading to each state/node whether it violates
our secrecy or authentication goals.

• we can use the standard search techniques to browse that tree, e.g.,
depth first, breadth first, iterative deepening.

Exercise: formalize and prove:

• When bounding everything, this yields a decision procedure.

• Otherwise, we can give a semi-decision procedure, i.e., one that is
guaranteed to terminate with an attack if there is one.

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 56 of 67

Decidability

Search Tree

We can consider a search tree, where

• each node is a state,

• the root node is the initial state,

• node n is a child of node m iff state n can be reached from state m by
one transition justified by a rule in our labeled transition system.

• we can check for the trace leading to each state/node whether it violates
our secrecy or authentication goals.

• we can use the standard search techniques to browse that tree, e.g.,
depth first, breadth first, iterative deepening.

Exercise: formalize and prove:

• When bounding everything, this yields a decision procedure.

• Otherwise, we can give a semi-decision procedure, i.e., one that is
guaranteed to terminate with an attack if there is one.

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 56 of 67

Decidability

Decidability Roadmap

Messages

Sessions

Nonces

Bounded

Bounded

Unbounded

Messages

Sessions

Nonces

Bounded

Bounded

Unbounded

Messages

Sessions

Nonces

Bounded

Bounded

Bounded

Messages

Sessions

Nonces

Bounded

Unbounded

Unbounded

Messages

Sessions

Nonces

Unbounded

Unbounded

Unbounded

Messages

Sessions

Nonces Bounded

Unbounded

Unbounded

• Bounding everything trivially yields decidability

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 57 of 67

Decidability

Lazy Intruder: Summary

• The constraint reduction produces finitely many simple constraints by a
terminating algorithm.

• If the number of threads is bounded, we now have a decision procedure
even without bounding the messages:

Theorem (Rusinowitch & Turuani 2001)

Protocol insecurity for a bounded number of threads is NP-complete.

Proof Sketch.

In NP: Guess a symbolic trace tr with no more than a given number of
threads and a sequence of reduction steps for the resulting constraints.
Check whether tr is an attack trace. All these steps can be polynomially
bounded.

NP-hard: Polynomial reduction from boolean formula satisfaction (3-SAT)
such that formula satisfiable iff protocol has an attack.

It follows that protocol security for a bounded number of threads is decidable.

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 58 of 67

Decidability

Lazy Intruder: Summary

• The constraint reduction produces finitely many simple constraints by a
terminating algorithm.

• If the number of threads is bounded, we now have a decision procedure
even without bounding the messages:

Theorem (Rusinowitch & Turuani 2001)

Protocol insecurity for a bounded number of threads is NP-complete.

Proof Sketch.

In NP: Guess a symbolic trace tr with no more than a given number of
threads and a sequence of reduction steps for the resulting constraints.
Check whether tr is an attack trace. All these steps can be polynomially
bounded.

NP-hard: Polynomial reduction from boolean formula satisfaction (3-SAT)
such that formula satisfiable iff protocol has an attack.

It follows that protocol security for a bounded number of threads is decidable.

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 58 of 67

Decidability

Lazy Intruder: Summary

• The constraint reduction produces finitely many simple constraints by a
terminating algorithm.

• If the number of threads is bounded, we now have a decision procedure
even without bounding the messages:

Theorem (Rusinowitch & Turuani 2001)

Protocol insecurity for a bounded number of threads is NP-complete.

Proof Sketch.

In NP: Guess a symbolic trace tr with no more than a given number of
threads and a sequence of reduction steps for the resulting constraints.
Check whether tr is an attack trace. All these steps can be polynomially
bounded.

NP-hard: Polynomial reduction from boolean formula satisfaction (3-SAT)
such that formula satisfiable iff protocol has an attack.

It follows that protocol security for a bounded number of threads is decidable.
R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 58 of 67

Decidability

Roadmap

Messages

Sessions

Nonces

Bounded

Bounded

Unbounded

Messages

Sessions

Nonces

Bounded

Bounded

Unbounded

Messages

Sessions

Nonces

Bounded

Bounded

Bounded

Messages

Sessions

Nonces

Bounded

Unbounded

Unbounded

Messages

Sessions

Nonces

Unbounded

Unbounded

Unbounded

Messages

Sessions

Nonces Bounded

Unbounded

Unbounded

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 59 of 67

Decidability

To complete the picture

Theorem (Durgin et al., 1999)

For an unbounded number of threads and an unbounded number of nonces,
protocol security is undecidable, even when bounding messages.

Theorem (Durgin et al., 1999)

For bounded messages and a bounded number of nonces, protocol security is
DEXPTIME-complete.

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 60 of 67

Decidability

(Un)decidability: Complete picture

Sessions

Nonces

Bounded

Bounded

Unbounded

Messages

Sessions

Nonces

Bounded

Bounded

Unbounded

Messages

Sessions

Nonces

Bounded

Bounded

Bounded

Messages

Sessions

Nonces

Unbounded

Unbounded

Unbounded

Messages

Sessions

Nonces Bounded

Unbounded

Unbounded

Unbounded

Messages

Messages

Sessions

Nonces

Bounded

Unbounded

Bottom line: need at least two bounded parameters for decidability.

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 61 of 67

Decidability

Tamarin overview

• Uses multiset rewriting to represent protocol

• Adversary message deduction rules given as multiset rewriting rules

• Properties specified in first-order logic
F Allows quantification over messages and timepoints

• Algorithm is proven sound and complete

• Backwards reachability analysis – searching for insecure states
F Negate security property, search for solutions

• Constraint solving
F Uses dependency graphs
F Normal dependency graphs for state-space reduction – efficiency

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 62 of 67

Decidability

Tamarin overview

• Uses multiset rewriting to represent protocol

• Adversary message deduction rules given as multiset rewriting rules

• Properties specified in first-order logic
F Allows quantification over messages and timepoints

• Algorithm is proven sound and complete

• Backwards reachability analysis – searching for insecure states
F Negate security property, search for solutions

• Constraint solving
F Uses dependency graphs
F Normal dependency graphs for state-space reduction – efficiency

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 62 of 67

Decidability

Tamarin workflow

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 63 of 67

Decidability

Tamarin’s constraint solving algorithm

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 64 of 67

Decidability

Dependency graph example

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 65 of 67

Decidability

Adversary rules

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 66 of 67

Decidability

Bibliography

• David Basin, Sebastian Mödersheim, and Luca Viganò. OFMC: A symbolic
model checker for security protocols. International Journal of Information
Security, 4(3), 2005.

• Hubert Comon, Véronique Cortier, John Mitchell. Tree automata with one
memory, set constraints, and ping-pong protocols. ICALP 2001.

• Shimon Even and Oded Goldreich. On the security of multi-party ping-pong
protocols, Symposium on Foundations of Computer Science, IEEE Computer
Society, 1983.

• N.Durgin, P.Lincoln, J.Mitchell, and A.Scedrov. Undecidability of bounded
security protocols. In Workshop on Formal Methods and Security Protocols
(FMSP ’99), 1999.

• J. Millen and V. Shmatikov. Constraint Solving for Bounded-Process
Cryptographic Protocol Analysis. CCS 2001.

• Michaël Rusinowitch and Mathieu Turuani. Protocol Insecurity with Finite
Number of Sessions is NP-complete. CSFW, 2001.

R. Sasse Tamarin Day 3, v.1 Jan 27, 2016 67 of 67

	Protocol Security Goals
	Secrecy
	Authentication
	Key-related properties
	Automated Verification
	Decidability

