
Verifying Security Protocols in Tamarin

Ralf Sasse
Institute of Information Security

ETH Zurich

Tamarin Day 2, v.1

Jan 26, 2016

Outline

1 Term Rewriting

2 The Dolev-Yao-Style Adversary

3 AnB Semantics

4 Rewriting-based Protocol Syntax

5 Protocol Semantics

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 2 of 67

Term Rewriting

Outline

1 Term Rewriting

2 The Dolev-Yao-Style Adversary

3 AnB Semantics

4 Rewriting-based Protocol Syntax

5 Protocol Semantics

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 3 of 67

Term Rewriting

Motivation

Term Rewriting is

• a useful and flexible formalism in general.
F Programming languages
F Automated deduction
F Rewriting logic

• used for representing protocols formally in this course!

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 4 of 67

Term Rewriting

Signature

Definition (Signature)

An unsorted signature Σ is a set of function symbols, each having an
arity n ≥ 0. We call function symbols of arity 0 constants.

Example (Peano notation for natural numbers)

Σ = {0, s,+}, where 0 is a constant, s has arity 1 and represents the
successor function, and + has arity 2 and represents addition. Note
that for binary operators we sometimes will use infix notation.

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 5 of 67

Term Rewriting

Signature

Definition (Signature)

An unsorted signature Σ is a set of function symbols, each having an
arity n ≥ 0. We call function symbols of arity 0 constants.

Example (Peano notation for natural numbers)

Σ = {0, s,+}, where 0 is a constant, s has arity 1 and represents the
successor function, and + has arity 2 and represents addition. Note
that for binary operators we sometimes will use infix notation.

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 5 of 67

Term Rewriting

Term Algebra

Definition (Term Algebra)

Let Σ be a signature, X a set of variables, and Σ ∩ X = ∅. We call
the set TΣ(X) the term algebra over Σ. It is the least set such that:

• X ⊆ TΣ(X).

• If t1, . . . , tn ∈ TΣ(X) and f ∈ Σ with arity n, then
f (t1, . . . , tn) ∈ TΣ(X).

The set of ground terms TΣ consists of terms built without variables,
i.e., TΣ := TΣ(∅).

Exercise: constants are included in TΣ and TΣ(X).

Example (Peano notation for natural numbers (ctd.))

s(0) ∈ TΣ

s(s(0)) + s(X) ∈ TΣ(X)
+s(0)+ /∈ TΣ(X)

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 6 of 67

Term Rewriting

Term Algebra

Definition (Term Algebra)

Let Σ be a signature, X a set of variables, and Σ ∩ X = ∅. We call
the set TΣ(X) the term algebra over Σ. It is the least set such that:

• X ⊆ TΣ(X).

• If t1, . . . , tn ∈ TΣ(X) and f ∈ Σ with arity n, then
f (t1, . . . , tn) ∈ TΣ(X).

The set of ground terms TΣ consists of terms built without variables,
i.e., TΣ := TΣ(∅).

Exercise: constants are included in TΣ and TΣ(X).

Example (Peano notation for natural numbers (ctd.))

s(0) ∈ TΣ

s(s(0)) + s(X) ∈ TΣ(X)
+s(0)+ /∈ TΣ(X)

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 6 of 67

Term Rewriting

Term Algebra

Definition (Term Algebra)

Let Σ be a signature, X a set of variables, and Σ ∩ X = ∅. We call
the set TΣ(X) the term algebra over Σ. It is the least set such that:

• X ⊆ TΣ(X).

• If t1, . . . , tn ∈ TΣ(X) and f ∈ Σ with arity n, then
f (t1, . . . , tn) ∈ TΣ(X).

The set of ground terms TΣ consists of terms built without variables,
i.e., TΣ := TΣ(∅).

Exercise: constants are included in TΣ and TΣ(X).

Example (Peano notation for natural numbers (ctd.))

s(0) ∈ TΣ

s(s(0)) + s(X) ∈ TΣ(X)
+s(0)+ /∈ TΣ(X)

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 6 of 67

Term Rewriting

Equational Theory

Definition (Equation)

An equation is a pair of terms, written: t = t ′, and a set of equations
is called an equational theory (Σ,E). An equation can be oriented as

t → t ′ ∈
→
E or as t ← t ′ ∈

←
E .

Equations are usually oriented from left to right for use in
simplification.

Example (Peano natural numbers (ctd.))

The equations E defining the Peano natural numbers are:
X + 0 = X
X + s(Y) = s(X + Y)

Using
→
E on s(s(0)) + s(0) yields the equational derivation:

s(s(0)) + s(0) = s(s(s(0)) + 0) = s(s(s(0))).

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 7 of 67

Term Rewriting

Equational Theory

Definition (Equation)

An equation is a pair of terms, written: t = t ′, and a set of equations
is called an equational theory (Σ,E). An equation can be oriented as

t → t ′ ∈
→
E or as t ← t ′ ∈

←
E .

Equations are usually oriented from left to right for use in
simplification.

Example (Peano natural numbers (ctd.))

The equations E defining the Peano natural numbers are:
X + 0 = X
X + s(Y) = s(X + Y)

Using
→
E on s(s(0)) + s(0) yields the equational derivation:

s(s(0)) + s(0) =

s(s(s(0)) + 0) = s(s(s(0))).

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 7 of 67

Term Rewriting

Equational Theory

Definition (Equation)

An equation is a pair of terms, written: t = t ′, and a set of equations
is called an equational theory (Σ,E). An equation can be oriented as

t → t ′ ∈
→
E or as t ← t ′ ∈

←
E .

Equations are usually oriented from left to right for use in
simplification.

Example (Peano natural numbers (ctd.))

The equations E defining the Peano natural numbers are:
X + 0 = X
X + s(Y) = s(X + Y)

Using
→
E on s(s(0)) + s(0) yields the equational derivation:

s(s(0)) + s(0) = s(s(s(0)) + 0) =

s(s(s(0))).

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 7 of 67

Term Rewriting

Equational Theory

Definition (Equation)

An equation is a pair of terms, written: t = t ′, and a set of equations
is called an equational theory (Σ,E). An equation can be oriented as

t → t ′ ∈
→
E or as t ← t ′ ∈

←
E .

Equations are usually oriented from left to right for use in
simplification.

Example (Peano natural numbers (ctd.))

The equations E defining the Peano natural numbers are:
X + 0 = X
X + s(Y) = s(X + Y)

Using
→
E on s(s(0)) + s(0) yields the equational derivation:

s(s(0)) + s(0) = s(s(s(0)) + 0) = s(s(s(0))).

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 7 of 67

Term Rewriting

Cryptographic Messages

We generally denote variables with upper case names X ,Y , . . ., and
function symbols (including constants) with lower case names a, b, ...

Definition (Messages)
A message is a term in TΣ(X), where
Σ = A ∪ F ∪ Func ∪ {pair , pk , aenc , senc}. We call

X the set of variables A, B, X , Y , Z , ...,
A the set of agents a, b, c , ...,
F the set of fresh values na, nb, k (nonces, keys, ...),
Func the set of user-defined functions (hash, exp, ...),
pair(t1, t2) pairing, also denoted by 〈t1, t2〉,
pk(t) public key,
aenc(t1, t2) asymmetric encryption, also denoted by {t1}t2 ,
senc(t1, t2) symmetric encryption, also denoted by {|t1|}t2 .

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 8 of 67

Term Rewriting

Free Algebra

Definition (Free Algebra)

In the free algebra every term is interpreted by itself (syntactically).

Example (Equational theory for symmetric cryptography)

Σ = A ∪ F ∪ {senc , sdec}, with senc and sdec of arity 2.
(E : sdec(senc(M,K),K) = M)

• t1 =free t2 iff t1 =syntactic t2.

• a 6=free b for different constants a and b.

• For above example: sdec(senc(X ,Y),Y) 6=free X .

This is too coarse, as we obviously want to identify those two terms,
which means we will need to reason modulo equations.

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 9 of 67

Term Rewriting

Algebraic Properties

Example (Equations E)

{{M}K}(K)−1 = M ((K)−1)−1 = K

{|{|M|}K |}K = M exp(exp(B,X),Y) = exp(exp(B,Y),X)

Definition (Congruence, Equivalence, Quotient)

A set of equations E induces a congruence relation =E on terms and
thus the equivalence class [t]E of a term modulo E . The quotient
algebra TΣ(X)/=E

interprets each term by its equivalence class.

• Two terms are semantically equal iff that is a consequence of E .

• For the above example equations:
F a 6=E b for any distinct constants a and b
F If m1 6=E m2 then also h(m1) 6=E h(m2)
F {{M}(K)−1}K =E M
F {|{|M|}exp(exp(g ,Y),X)|}exp(exp(g ,X),Y) =E M

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 10 of 67

Term Rewriting

Algebraic Properties

Example (Equations E)

{{M}K}(K)−1 = M ((K)−1)−1 = K

{|{|M|}K |}K = M exp(exp(B,X),Y) = exp(exp(B,Y),X)

Definition (Congruence, Equivalence, Quotient)

A set of equations E induces a congruence relation =E on terms and
thus the equivalence class [t]E of a term modulo E . The quotient
algebra TΣ(X)/=E

interprets each term by its equivalence class.

• Two terms are semantically equal iff that is a consequence of E .
• For the above example equations:

F a 6=E b for any distinct constants a and b

F If m1 6=E m2 then also h(m1) 6=E h(m2)
F {{M}(K)−1}K =E M
F {|{|M|}exp(exp(g ,Y),X)|}exp(exp(g ,X),Y) =E M

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 10 of 67

Term Rewriting

Algebraic Properties

Example (Equations E)

{{M}K}(K)−1 = M ((K)−1)−1 = K

{|{|M|}K |}K = M exp(exp(B,X),Y) = exp(exp(B,Y),X)

Definition (Congruence, Equivalence, Quotient)

A set of equations E induces a congruence relation =E on terms and
thus the equivalence class [t]E of a term modulo E . The quotient
algebra TΣ(X)/=E

interprets each term by its equivalence class.

• Two terms are semantically equal iff that is a consequence of E .
• For the above example equations:

F a 6=E b for any distinct constants a and b
F If m1 6=E m2 then also h(m1) 6=E h(m2)

F {{M}(K)−1}K =E M
F {|{|M|}exp(exp(g ,Y),X)|}exp(exp(g ,X),Y) =E M

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 10 of 67

Term Rewriting

Algebraic Properties

Example (Equations E)

{{M}K}(K)−1 = M ((K)−1)−1 = K

{|{|M|}K |}K = M exp(exp(B,X),Y) = exp(exp(B,Y),X)

Definition (Congruence, Equivalence, Quotient)

A set of equations E induces a congruence relation =E on terms and
thus the equivalence class [t]E of a term modulo E . The quotient
algebra TΣ(X)/=E

interprets each term by its equivalence class.

• Two terms are semantically equal iff that is a consequence of E .
• For the above example equations:

F a 6=E b for any distinct constants a and b
F If m1 6=E m2 then also h(m1) 6=E h(m2)
F {{M}(K)−1}K =E M

F {|{|M|}exp(exp(g ,Y),X)|}exp(exp(g ,X),Y) =E M

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 10 of 67

Term Rewriting

Algebraic Properties

Example (Equations E)

{{M}K}(K)−1 = M ((K)−1)−1 = K

{|{|M|}K |}K = M exp(exp(B,X),Y) = exp(exp(B,Y),X)

Definition (Congruence, Equivalence, Quotient)

A set of equations E induces a congruence relation =E on terms and
thus the equivalence class [t]E of a term modulo E . The quotient
algebra TΣ(X)/=E

interprets each term by its equivalence class.

• Two terms are semantically equal iff that is a consequence of E .
• For the above example equations:

F a 6=E b for any distinct constants a and b
F If m1 6=E m2 then also h(m1) 6=E h(m2)
F {{M}(K)−1}K =E M
F {|{|M|}exp(exp(g ,Y),X)|}exp(exp(g ,X),Y) =E M

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 10 of 67

Term Rewriting

Substitution

Definition (Substitution)

A substitution σ is a function σ : X → TΣ(X) where σ(x) 6= x for
finitely many x ∈ X .
We write substitutions in postfix notation and homomorphically
extend them to a mapping σ : TΣ(X)→ TΣ(X) on terms:

f (t1, . . . , tn)σ = f (t1σ, . . . , tnσ)

Example (Applying a substitution)

Given substitution σ = {X 7→ senc(M,K)} and the term
t = sdec(X ,K) we can apply the substitution and get
tσ = sdec(senc(M,K),K).

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 11 of 67

Term Rewriting

Substitution

Definition (Substitution)

A substitution σ is a function σ : X → TΣ(X) where σ(x) 6= x for
finitely many x ∈ X .
We write substitutions in postfix notation and homomorphically
extend them to a mapping σ : TΣ(X)→ TΣ(X) on terms:

f (t1, . . . , tn)σ = f (t1σ, . . . , tnσ)

Example (Applying a substitution)

Given substitution σ = {X 7→ senc(M,K)} and the term
t = sdec(X ,K) we can apply the substitution and get
tσ = sdec(senc(M,K),K).

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 11 of 67

Term Rewriting

Substitution (ctd.)

Definition (Substitution composition)

We denote with στ the composition of substitutions σ and τ , i.e.,
τ ◦ σ.

Example (Substitution composition)

For substitutions σ = [x 7→ f (y), y 7→ z] and τ = [y 7→ a, z 7→ g(b)]
we have στ = [x 7→ f (a), y 7→ g(b), z 7→ g(b)].

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 12 of 67

Term Rewriting

Position

Definition (Position)

A position p is a sequence of positive integers. The subterm t|p of a
term t at position p is obtained as follows.

• If p = [] is the empty sequence, then t|p = t.

• If p = [i] · p′ for a positive integer i and a sequence p′, and
t = f (t1, . . . , tn) for f ∈ Σ and 1 ≤ i ≤ n then t|p = ti |p′ , else
t|p does not exist.

Example (Position in a term)

For the term t = sdec(senc(M,K),K) we have five subterms:
t|[] = t
t|[1] = senc(M,K)
t|[1,1] = M
t|[1,2] = K
t|[2] = K

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 13 of 67

Term Rewriting

Graphical representation of positions in a term

Tree of subterms of sdec(senc(M,K)) and their positions.

sdec(senc(M,K),K) []

[1] senc(M,K)

[1, 1] M K [1, 2]

K [2]

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 14 of 67

Term Rewriting

Matching and Application

Definition (Matching)

A term t matches another term l if there is a subterm of t, i.e., t|p,
such that there is a substitution σ so that t|p = lσ. We call σ the
matching substitution.

Definition (Application of a rule)

A rule (oriented equation) l → r is applicable on a term t, when t
matches l .

The result of such a rule application is the term t[rσ]p, where σ is the
matching substitution.

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 15 of 67

Term Rewriting

Matching and Application

Definition (Matching)

A term t matches another term l if there is a subterm of t, i.e., t|p,
such that there is a substitution σ so that t|p = lσ. We call σ the
matching substitution.

Definition (Application of a rule)

A rule (oriented equation) l → r is applicable on a term t, when t
matches l .

The result of such a rule application is the term t[rσ]p, where σ is the
matching substitution.

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 15 of 67

Term Rewriting

Unification

Definition (Unification)

We say that t
?
= t ′ is unifiable in (Σ,E) for t, t ′ ∈ TΣ(X), if there is a

substitution σ such that tσ =E t ′σ and we call σ a unifier.

For syntactic unification (E = ∅) there is a most general unifier for
two unifiable terms, and it is decidable whether they are unifiable.

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 16 of 67

Term Rewriting

Unification modulo theories

• When considering other algebras, unifiability is in general
undecidable, e.g., associativity and distributivity.

• Even when decidable, there is in general no unique most general
unifier, e.g., {exp(X ,Y), exp(X ′, c)} . . .

• Some unification problems are decidable but infinitary: in general,
there is an infinite set of most general unifiers, e.g., associativity.

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 17 of 67

Term Rewriting

Equational Proofs

Definition (Equality Relation)

Given (Σ,E), an E -equality step for u, v ∈ TΣ(X) is defined as
u →(

→
E ∪

←
E) v and denoted as u ↔E v .

The transitive-reflexive closure of ↔E is the E -equality relation =E .

Definition (Equality Proof)

A sequence of steps t0 ↔E t1 ↔E . . .↔E tn, witnessing n-step
equality of t0 ↔+

E tn is an equality proof.

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 18 of 67

Term Rewriting

Equality for Peano natural numbers

Example (Equality reasoning for Peano natural numbers)

Consider how to prove s(s(0)) + s(0) = s(0) + s(s(0)):

s(s(0)) + s(0) = s(s(s(0)) + 0) = s(s(s(0)))

= s(s(s(0) + 0)) = s(s(0) + s(0)) = s(0) + s(s(0))

Complicated! Using termination and confluence, we could have
instead computed the normal form of both sides, and simply
compared them! (See next slides.)

See also: Assignment 2.2.

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 19 of 67

Term Rewriting

Termination of
→
E

Definition (Termination)

(Σ,
→
E) has infinite computations, if there is a function a : N→ TΣ(X)

such that

a(0)→→
E

a(1)→→
E

a(2)→→
E
. . .→→

E
a(n)→→

E
a(n + 1) . . .

We say it is terminating, when it does not have infinite computations.

Example (Termination)

For E = {a = b},
→
E is terminating.

For E = {a = b, b = a},
→
E is not terminating.

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 20 of 67

Term Rewriting

Confluence of
→
E

Definition (Confluence)

Confluence is the property that guarantees the order of applying
equalities is immaterial, formally:
∀t, t1, t2.t →∗ t1 ∧ t →∗ t2 ⇒ ∃s.t1 →∗ s ∧ t2 →∗ s

t

t1 t2

s

Example (Confluence)

For E = {a = b, a = c}, we have that
→
E is not confluent, as b and c

are reachable from a, but not joinable.
For E = {a = b, a = c , b = c}, then

→
E is confluent.

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 21 of 67

The Dolev-Yao-Style Adversary

Outline

1 Term Rewriting

2 The Dolev-Yao-Style Adversary

3 AnB Semantics

4 Rewriting-based Protocol Syntax

5 Protocol Semantics

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 22 of 67

The Dolev-Yao-Style Adversary

Modeling the Adversary

Initiator

Protocol specification Protocol execution

Responder

Alice as
initiator

Alice as
initiator

Bob as
initiator

Bob as
responder

Charlie as
responder

request

{| m |}k

cryptographic primitives

communication model

agent model

Network

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 23 of 67

The Dolev-Yao-Style Adversary

Danny Dolev & Andrew C. Yao

On the Security of Public Key Protocols (IEEE Trans. Inf. Th., 1983)

• Consider a public key system in which for every user X
F there is a public encryption function EX

— every user can apply this function.
F and a private decryption function DX

— only X can apply this function.
F These functions have the property that EXDX = DXEX = 1.

• The Dolev-Yao adversary:
F Controls the network (read, intercept, send)
F Is also a user, called Z
F Can apply EX for any X
F Can apply DZ

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 24 of 67

The Dolev-Yao-Style Adversary

Dolev-Yao Deduction

Definition (Adversary Knowledge)

We represent the adversary knowing a term t by a fact K(t). The set
of the adversary’s knowledge is K and contains facts of the form
K(t), all of which are persistent.

Definition (Adversary Knowledge Derivation)

The adversary can use the following inference rules on the state:

Fr(x)

K(x)

Out(x)

K(x)

K(x)

In(x)

K(t1) . . .K(tk)

K(f (t1, ..., tk))
∀f ∈ Σ(k-ary)

Note that terms are used modulo the equational theory. So, given
K(< t1, t2 >) the operator fst can be applied, and the result is K(t1).

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 25 of 67

The Dolev-Yao-Style Adversary

Dolev-Yao Deduction

Example

Given K(x),K({|b, n|}k),K(k),K(m) ∈ K. Use the equational theory
E (containing decryption and pairing) to derive K({|m|}prf (n,x))

K(m)

K({|b, n|}k) K(k)

K({|{|b, n|}k |}k)

K(b, n)
E

K(snd(b, n))

K(n)
E

K(x)

K(prf (n, x))

K({|m|}prf (n,x))

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 26 of 67

The Dolev-Yao-Style Adversary

Dolev-Yao Deduction

Example

Given K(x),K({|b, n|}k),K(k),K(m) ∈ K. Use the equational theory
E (containing decryption and pairing) to derive K({|m|}prf (n,x))

K(m)

K({|b, n|}k) K(k)

K({|{|b, n|}k |}k)

K(b, n)
E

K(snd(b, n))

K(n)
E

K(x)

K(prf (n, x))

K({|m|}prf (n,x))

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 26 of 67

The Dolev-Yao-Style Adversary

Dolev-Yao Deduction

Example

Given K(x),K({|b, n|}k),K(k),K(m) ∈ K. Use the equational theory
E (containing decryption and pairing) to derive K({|m|}prf (n,x))

K(m)

K({|b, n|}k) K(k)

K({|{|b, n|}k |}k)

K(b, n)
E

K(snd(b, n))

K(n)
E

K(x)

K(prf (n, x))

K({|m|}prf (n,x))

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 26 of 67

The Dolev-Yao-Style Adversary

Dolev-Yao Deduction

Example

Given K(x),K({|b, n|}k),K(k),K(m) ∈ K. Use the equational theory
E (containing decryption and pairing) to derive K({|m|}prf (n,x))

K(m)

K({|b, n|}k) K(k)

K({|{|b, n|}k |}k)

K(b, n)
E

K(snd(b, n))

K(n)
E

K(x)

K(prf (n, x))

K({|m|}prf (n,x))

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 26 of 67

The Dolev-Yao-Style Adversary

Dolev-Yao Deduction

Example

Given K(x),K({|b, n|}k),K(k),K(m) ∈ K. Use the equational theory
E (containing decryption and pairing) to derive K({|m|}prf (n,x))

K(m)

K({|b, n|}k) K(k)

K({|{|b, n|}k |}k)

K(b, n)
E

K(snd(b, n))

K(n)
E

K(x)

K(prf (n, x))

K({|m|}prf (n,x))

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 26 of 67

The Dolev-Yao-Style Adversary

Dolev-Yao Deduction

Example

Given K(x),K({|b, n|}k),K(k),K(m) ∈ K. Use the equational theory
E (containing decryption and pairing) to derive K({|m|}prf (n,x))

K(m)

K({|b, n|}k) K(k)

K({|{|b, n|}k |}k)

K(b, n)
E

K(snd(b, n))

K(n)
E

K(x)

K(prf (n, x))

K({|m|}prf (n,x))

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 26 of 67

The Dolev-Yao-Style Adversary

Dolev-Yao Deduction

Example

Given K(x),K({|b, n|}k),K(k),K(m) ∈ K. Use the equational theory
E (containing decryption and pairing) to derive K({|m|}prf (n,x))

K(m)

K({|b, n|}k) K(k)

K({|{|b, n|}k |}k)

K(b, n)
E

K(snd(b, n))

K(n)
E

K(x)

K(prf (n, x))

K({|m|}prf (n,x))

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 26 of 67

The Dolev-Yao-Style Adversary

Dolev-Yao Deduction

Example

Given K(x),K({|b, n|}k),K(k),K(m) ∈ K. Use the equational theory
E (containing decryption and pairing) to derive K({|m|}prf (n,x))

K(m)

K({|b, n|}k) K(k)

K({|{|b, n|}k |}k)

K(b, n)
E

K(snd(b, n))

K(n)
E

K(x)

K(prf (n, x))

K({|m|}prf (n,x))

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 26 of 67

The Dolev-Yao-Style Adversary

Dolev-Yao Deduction

Example

Given K(x),K({|b, n|}k),K(k),K(m) ∈ K. Use the equational theory
E (containing decryption and pairing) to derive K({|m|}prf (n,x))

K(m)

K({|b, n|}k) K(k)

K({|{|b, n|}k |}k)

K(b, n)
E

K(snd(b, n))

K(n)
E

K(x)

K(prf (n, x))

K({|m|}prf (n,x))

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 26 of 67

The Dolev-Yao-Style Adversary

Dolev-Yao Deduction

Example

Given K(x),K({|b, n|}k),K(k),K(m) ∈ K. Use the equational theory
E (containing decryption and pairing) to derive K({|m|}prf (n,x))

K(m)

K({|b, n|}k) K(k)

K({|{|b, n|}k |}k)

K(b, n)
E

K(snd(b, n))

K(n)
E

K(x)

K(prf (n, x))

K({|m|}prf (n,x))

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 26 of 67

The Dolev-Yao-Style Adversary

Dolev-Yao Deduction

Definition (Adversary Knowledge Derivation as rewrite rules)

[Fr(x)] −→ [K(x)]

[Out(x)] −→ [K(x)]

[K(x)]
K(x)−−−→ [In(x)]

[K(t1), . . . ,K(tk)] −→ [K(f (t1, . . . , tk))] ∀f ∈ Σ(k-ary)

As you see, the adversary deriving a message and then sending it (via
In) is annotated with the action fact K (identical to its state fact of
the same name!), and we use this for our reasoning later.

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 27 of 67

AnB Semantics

Outline

1 Term Rewriting

2 The Dolev-Yao-Style Adversary

3 AnB Semantics

4 Rewriting-based Protocol Syntax

5 Protocol Semantics

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 28 of 67

AnB Semantics

Outline

Basic ideas:

• We express the semantics of an AnB specification by a finite set
P of role descriptions.

• Additionally, define an initial state ([], IK 0, th0) with an infinite
number of threads.

• Then the semantics of role-descriptions defines an infinite-state
transition system.

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 29 of 67

AnB Semantics

Recall initial idea

Split a message sequence chart into roles:

A B

{NA, A}pk(B)

{NA,NB}pk(A)

{NB}pk(B)

msc NSPK

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 30 of 67

AnB Semantics

Recall initial idea

Split a message sequence chart into roles:

A

{NA, A}pk(B)

{NA,NB}pk(A)

{NB}pk(B)

msc NSPK A

B

{NA, A}pk(B)

{NA, NB}pk(A)

{NB}pk(B)

msc NSPK B

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 30 of 67

AnB Semantics

Recall initial idea

Not trivial for all protocols:

A B

{|M |}K

{|{|M |}K |}k(A,B)

{|K|}k(A,B)

msc Encryption-Example

Here, k(A,B) is a shared key of A and B, K is fresh.

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 31 of 67

AnB Semantics

Recall initial idea

Not trivial for all protocols:

A

{|M |}K

{|{|M |}K |}k(A,B)

{|K|}k(A,B)

msc

Encryption-Example A

B

{|M |}K

{|{|M |}K |}k(A,B)

{|K|}k(A,B)

msc

Encryption-Example B

This is wrong: B cannot decrypt/check the format of the first
message... before receiving the third!

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 31 of 67

AnB Semantics

Problems with the naive translation

• All protocols where agents cannot fully decrypt messages they
receive: Kerberos, NSCK, many other shared-key examples.

• Diffie-Hellman.

• All these protocols would give unrealistic models.

• No executability check: can the agents generate all messages as
they are supposed to?

• Construction of messages depends on agents’ view of the
messages and algebraic properties.

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 32 of 67

AnB Semantics

A running example for the semantics of AnB

Protocol : Diffie-Hellman
Types :
A A,B;
Number g ,X ,Y ,Msg ;
Function pk;

Knowledge :
A : A,B, g , pk, (pk(A))−1 ;
B : B, g , pk, (pk(B))−1 ;

Actions :
A → B : {exp(g ,X)}(pk(A))−1

B → A : {exp(g ,Y)}(pk(B))−1

A → B : {|A,Msg |}exp(exp(g ,X),Y)

Goals :
A •→• B : Msg

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 33 of 67

AnB Semantics

Construction of Messages

Consider the set of messages M that an agent knows at a certain
stage of the protocol execution:

Example (Diffie-Hellman, Alice, receiving msg. 2)

M = {A,B, pk, (pk(A))−1,︸ ︷︷ ︸
Initial Knowledge

X ,Msg︸ ︷︷ ︸
created

{exp(g ,Y)}(pk(B))−1︸ ︷︷ ︸
received

}

The next outgoing message of Alice is m = {|A,Msg |}exp(exp(g ,X),Y).

Crucial questions for defining the semantics:

• What can she check about M?

• Can she construct m from knowledge M? Executability.

• If she can construct m: how?

To formally define this, we begin by labeling each element of M with
a new variable Xi .

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 34 of 67

AnB Semantics

Construction of Messages

Consider the set of messages M that an agent knows at a certain
stage of the protocol execution:

Example (Diffie-Hellman, Alice, receiving msg. 2)

M = {AX0 ,BX1 , pkX2 , (pk(A)X3)−1,︸ ︷︷ ︸
Initial Knowledge

XX4 ,MsgX5︸ ︷︷ ︸
created

{exp(g ,Y)}(pk(B))−1
X6︸ ︷︷ ︸

received

}

The next outgoing message of Alice is m = {|A,Msg |}exp(exp(g ,X),Y).

Crucial questions for defining the semantics:

• What can she check about M?

• Can she construct m from knowledge M? Executability.

• If she can construct m: how?

To formally define this, we begin by labeling each element of M with
a new variable Xi .

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 34 of 67

AnB Semantics

Labeled Adversary Deduction

We define a variant DY l of the Dolev-Yao closure for labeled terms:

Definition

ml ∈ DY l(M)
Axiom (ml ∈ M) sk ∈ DY l(M)

t l ∈ DY l(M)
Algebra (s ≈ t, l ≈ k)

t l11 ∈ DY l(M) . . . t lnn ∈ DY l(M)

f (t1, . . . , tn)f (l1,...,ln) ∈ DY l(M)
Composition (f ∈ Σp)

We push implicit decryption under the carpet here (a bit tricky). . .

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 35 of 67

AnB Semantics

Construction of Messages

Example (Diffie-Hellman, Alice, receiving msg. 2)

M = {AX0 ,BX1 , pkX2 , (pk(A)X3)−1,︸ ︷︷ ︸
Initial Knowledge

XX4 ,MsgX5︸ ︷︷ ︸
created

{exp(g ,Y)}(pk(B))−1
X6︸ ︷︷ ︸

received

}

The next outgoing message of Alice is m = {|A,Msg |}exp(exp(g ,X),Y).

Alice can derive m:

{exp(g ,Y)}(pk(B))−1
X6

open({exp(g ,Y)}(pk(B))−1)open(X6)

exp(g ,Y)open(X6) XX4

exp(exp(g ,Y),X)exp(open(X6),X4)

exp(exp(g ,X),Y)exp(open(X6),X4) . . .

{|A,Msg |}{|X0,X5|}exp(open(X6),X4)

exp(exp(g ,X),Y)

. . . as {|X0,X5|}exp(open(X6),X4).
R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 36 of 67

AnB Semantics

Construction of Messages

Example (Diffie-Hellman, Alice, receiving msg. 2)

M = {AX0 ,BX1 , pkX2 , (pk(A)X3)−1,︸ ︷︷ ︸
Initial Knowledge

XX4 ,MsgX5︸ ︷︷ ︸
created

{exp(g ,Y)}(pk(B))−1
X6︸ ︷︷ ︸

received

}

The next outgoing message of Alice is m = {|A,Msg |}exp(exp(g ,X),Y).

Alice can derive m:

{exp(g ,Y)}(pk(B))−1
X6

open({exp(g ,Y)}(pk(B))−1)open(X6)

exp(g ,Y)open(X6) XX4

exp(exp(g ,Y),X)exp(open(X6),X4)

exp(exp(g ,X),Y)exp(open(X6),X4) . . .

{|A,Msg |}{|X0,X5|}exp(open(X6),X4)

exp(exp(g ,X),Y)

. . . as {|X0,X5|}exp(open(X6),X4).
R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 36 of 67

AnB Semantics

Construction of Messages

Example (Diffie-Hellman, Alice, receiving msg. 2)

M = {AX0 ,BX1 , pkX2 , (pk(A)X3)−1,︸ ︷︷ ︸
Initial Knowledge

XX4 ,MsgX5︸ ︷︷ ︸
created

{exp(g ,Y)}(pk(B))−1
X6︸ ︷︷ ︸

received

}

The next outgoing message of Alice is m = {|A,Msg |}exp(exp(g ,X),Y).

Alice can derive m:

{exp(g ,Y)}(pk(B))−1
X6

open({exp(g ,Y)}(pk(B))−1)open(X6)

exp(g ,Y)open(X6) XX4

exp(exp(g ,Y),X)exp(open(X6),X4)

exp(exp(g ,X),Y)exp(open(X6),X4) . . .

{|A,Msg |}{|X0,X5|}exp(open(X6),X4)

exp(exp(g ,X),Y)

. . . as {|X0,X5|}exp(open(X6),X4).
R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 36 of 67

AnB Semantics

Construction of Messages

Example (Diffie-Hellman, Alice, receiving msg. 2)

M = {AX0 ,BX1 , pkX2 , (pk(A)X3)−1,︸ ︷︷ ︸
Initial Knowledge

XX4 ,MsgX5︸ ︷︷ ︸
created

{exp(g ,Y)}(pk(B))−1
X6︸ ︷︷ ︸

received

}

The next outgoing message of Alice is m = {|A,Msg |}exp(exp(g ,X),Y).

Alice can derive m:

{exp(g ,Y)}(pk(B))−1
X6

open({exp(g ,Y)}(pk(B))−1)open(X6)

exp(g ,Y)open(X6) XX4

exp(exp(g ,Y),X)exp(open(X6),X4)

exp(exp(g ,X),Y)exp(open(X6),X4) . . .

{|A,Msg |}{|X0,X5|}exp(open(X6),X4)

exp(exp(g ,X),Y)

. . . as {|X0,X5|}exp(open(X6),X4).
R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 36 of 67

AnB Semantics

Construction of Messages

Example (Diffie-Hellman, Alice, receiving msg. 2)

M = {AX0 ,BX1 , pkX2 , (pk(A)X3)−1,︸ ︷︷ ︸
Initial Knowledge

XX4 ,MsgX5︸ ︷︷ ︸
created

{exp(g ,Y)}(pk(B))−1
X6︸ ︷︷ ︸

received

}

The next outgoing message of Alice is m = {|A,Msg |}exp(exp(g ,X),Y).

Alice can derive m:

{exp(g ,Y)}(pk(B))−1
X6

open({exp(g ,Y)}(pk(B))−1)open(X6)

exp(g ,Y)open(X6) XX4

exp(exp(g ,Y),X)exp(open(X6),X4)

exp(exp(g ,X),Y)exp(open(X6),X4) . . .

{|A,Msg |}{|X0,X5|}exp(open(X6),X4)

exp(exp(g ,X),Y)

. . . as {|X0,X5|}exp(open(X6),X4).
R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 36 of 67

AnB Semantics

Construction of Messages

Example (Diffie-Hellman, Alice, receiving msg. 2)

M = {AX0 ,BX1 , pkX2 , (pk(A)X3)−1,︸ ︷︷ ︸
Initial Knowledge

XX4 ,MsgX5︸ ︷︷ ︸
created

{exp(g ,Y)}(pk(B))−1
X6︸ ︷︷ ︸

received

}

The next outgoing message of Alice is m = {|A,Msg |}exp(exp(g ,X),Y).

Alice can derive m:

{exp(g ,Y)}(pk(B))−1
X6

open({exp(g ,Y)}(pk(B))−1)open(X6)

exp(g ,Y)open(X6) XX4

exp(exp(g ,Y),X)exp(open(X6),X4)

exp(exp(g ,X),Y)exp(open(X6),X4) . . .

{|A,Msg |}{|X0,X5|}exp(open(X6),X4)

exp(exp(g ,X),Y)

. . . as {|X0,X5|}exp(open(X6),X4).
R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 36 of 67

AnB Semantics

Construction of Messages

Example (Diffie-Hellman, Alice, receiving msg. 2)

M = {AX0 ,BX1 , pkX2 , (pk(A)X3)−1,︸ ︷︷ ︸
Initial Knowledge

XX4 ,MsgX5︸ ︷︷ ︸
created

{exp(g ,Y)}(pk(B))−1
X6︸ ︷︷ ︸

received

}

The next outgoing message of Alice is m = {|A,Msg |}exp(exp(g ,X),Y).

Alice can derive m:

{exp(g ,Y)}(pk(B))−1
X6

open({exp(g ,Y)}(pk(B))−1)open(X6)

exp(g ,Y)open(X6) XX4

exp(exp(g ,Y),X)exp(open(X6),X4)

exp(exp(g ,X),Y)exp(open(X6),X4) . . .

{|A,Msg |}{|X0,X5|}exp(open(X6),X4)

exp(exp(g ,X),Y)

. . . as {|X0,X5|}exp(open(X6),X4).
R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 36 of 67

AnB Semantics

Checking Messages

Crucial questions for defining the semantics:

• What can she check about M?

X Can she construct m from knowledge M? Executability.

X If she can construct M: how?

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 37 of 67

AnB Semantics

Checking Messages

Checking is quite tricky, again:

• In general, all pairs (l1, l2) of distinct derivations the agent can do
and that should give the same term t according to the protocol:

t l1 , t l2 ∈ DY l(M)

• In general, there are infinitely many checks.

• For many algebraic theories (e.g. exponentiation) we can reduce
this to an equivalent finite set of checks.

• These checks and the explicit destructors can, for many
examples, be translated into pattern matching, e.g.

rcv(X6) where verify(pk(B),X6) ≈ true
snd(. . . , open(X6), . . .)

7→ rcv({X ′6}(pk(B))−1)

snd(. . . ,X ′6, . . .)

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 38 of 67

AnB Semantics

Result on Diffie-Hellman:

A

{exp(g,X)}inv(pk(A))

{GY }inv(pk(B))

{|A,B,Msg |}exp(GY ,X)

msc DH A

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 39 of 67

AnB Semantics

Our problem from before

A B

{|M |}K

{|{|M |}K |}k(A,B)

{|K|}k(A,B)

msc Encryption-Example

. . . requires some extension of role-descriptions!

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 40 of 67

AnB Semantics

Our problem from before

B

X

{|X |}k(A,B)

X = {|X ′|}K

{|K|}k(A,B)

msc

Encryption-Example B

. . . requires some extension of role-descriptions!
R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 40 of 67

AnB Semantics

Initial state

Definition

• Let Agent ⊂ Σ0 be the set of all (constant) agent names,
including the adversary i .

• Let V be the set of all variables in the initial knowledge of the
roles (which are of type agent according to AnB syntax).

• Let SubV be the set of all substitutions σ with dom(σ) = V and
ran(σ) ⊂ Agent.

• IK 0 =
⋃
σ∈SubV∧Rσ=i init(R)σ where init(R) is the initial

knowledge of role R in the AnB spec.

Example

Let Agent = {a, b, i}. For NSPK, we the set of roles V = {A,B}.
SubV = { [A 7→ a,B 7→ b], [A 7→ b,B 7→ a], [A 7→ a,B 7→ i], . . .}.
IK 0 = {a, b, i , pk, (pk(i))−1}.

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 41 of 67

AnB Semantics

Initial state (cont.)

Definition

Consider a protocol P with roles dom(P) = {R1, . . . ,Rk} and let
SubV = {σ1, σ2, . . .}
• Let TID = ({1, . . . , k} × N× N)

• For each (r , i , n) ∈ TID, let σ(r ,i ,n) a substitution with domain
fv(Rr) where vσ(r ,i ,n) = vσi for all role names v ∈ V ∩ fv(Rr)
and where the remaining free variables, i.e. fv(Rr) \ V , are
mapped to fresh constants (disjoint over all σ(r ,i ,n)).

• role((r , i , n)) = Rr for all (r , i , n) ∈ TID

• player((r , i , n)) = Rrσ(r ,i ,n) for all (r , i , n) ∈ TID

• th0((r , i , n)) = P(Rr)σ(r ,i ,n) for all (r , i , n) ∈ TID where
player((r , i , n)) 6= i .

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 42 of 67

AnB Semantics

Initial state (cont.)

For the NSPK attack, we need the following two threads, where
σ1 = [A 7→ a,B 7→ b], σ3 = [A 7→ a,B 7→ i]

Example

σ(1,3,0) = [A 7→ a,B 7→ i ,NA 7→ na(1,3,0)]
σ(2,1,0) = [B 7→ b,NB 7→ nb(2,1,0)]

Actually, since A /∈ fvB, also σ2,3,0 would equally work for the attack.

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 43 of 67

AnB Semantics

Overview

• Introduction
• Two formal specification languages:

AnB

Syntax

AnB

Semantics

Roles

Syntax

Roles

Semantics

The Dolev-Yao-
style adversary

• Security Properties
• Landscape of Protocol Models: a quick tour.

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 44 of 67

Rewriting-based Protocol Syntax

Outline

1 Term Rewriting

2 The Dolev-Yao-Style Adversary

3 AnB Semantics

4 Rewriting-based Protocol Syntax

5 Protocol Semantics

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 45 of 67

Rewriting-based Protocol Syntax

Restricted Tamarin syntax with explicit send/receive

A protocol defines the behavior of a set of roles. Every role has a
name R and consists of a set of rules, specifying the sending and
receiving of messages, and the generation of fresh constants.

Such a
rule is of the form

[St R s(A, id , k1, . . . , kn), ...]
a−→ [St R s′(A, id , k ′1, . . . , k

′
m), ...]

where R is the role name, s ∈ N the index for the present protocol
step of the role, s ′ = s + 1 the index for the subsequent step. A is the
agent name, id the thread identifier for this instantiation of role R,
and the ki , k

′
j ∈ TΣ(X) are terms in the agent’s knowledge.

We call St R s(A, . . .) an agent state fact for role R.

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 46 of 67

Rewriting-based Protocol Syntax

Restricted Tamarin syntax with explicit send/receive

A protocol defines the behavior of a set of roles. Every role has a
name R and consists of a set of rules, specifying the sending and
receiving of messages, and the generation of fresh constants. Such a
rule is of the form

[St R s(A, id , k1, . . . , kn), ...]
a−→ [St R s′(A, id , k ′1, . . . , k

′
m), ...]

where R is the role name, s ∈ N the index for the present protocol
step of the role, s ′ = s + 1 the index for the subsequent step. A is the
agent name, id the thread identifier for this instantiation of role R,
and the ki , k

′
j ∈ TΣ(X) are terms in the agent’s knowledge.

We call St R s(A, . . .) an agent state fact for role R.

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 46 of 67

Rewriting-based Protocol Syntax

Restricted Tamarin syntax with explicit send/receive

A protocol defines the behavior of a set of roles. Every role has a
name R and consists of a set of rules, specifying the sending and
receiving of messages, and the generation of fresh constants. Such a
rule is of the form

[St R s(A, id , k1, . . . , kn), ...]
a−→ [St R s′(A, id , k ′1, . . . , k

′
m), ...]

where R is the role name, s ∈ N the index for the present protocol
step of the role, s ′ = s + 1 the index for the subsequent step. A is the
agent name, id the thread identifier for this instantiation of role R,
and the ki , k

′
j ∈ TΣ(X) are terms in the agent’s knowledge.

We call St R s(A, . . .) an agent state fact for role R.

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 46 of 67

Rewriting-based Protocol Syntax

Nomenclature

Definition (Facts)

We call the top-level operators of the left- and right-hand sides of
rules state facts, e.g., St R s(. . .), and we call the top-level operators
in the rule label a the action facts. All arguments of facts are terms in
TΣ(X).

Definition (Events)

For a protocol rule l
a−→ r the actions a include all the information we

will reason about. Thus, our traces of events will consist of sequences
of such labels.

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 47 of 67

Rewriting-based Protocol Syntax

Nomenclature

Definition (Facts)

We call the top-level operators of the left- and right-hand sides of
rules state facts, e.g., St R s(. . .), and we call the top-level operators
in the rule label a the action facts. All arguments of facts are terms in
TΣ(X).

Definition (Events)

For a protocol rule l
a−→ r the actions a include all the information we

will reason about. Thus, our traces of events will consist of sequences
of such labels.

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 47 of 67

Rewriting-based Protocol Syntax

Communication

Messages are sent and received via In and Out facts, respectively, and
any rule with such a fact also will have a matching Send and Recv
action, respectively.

Example (Rule examples)

Receive rule example

[St I 2(A, 17, k), In(m)]
Recv(A,m)−−−−−−→ [St I 3(A, 17, k ,m)]

Send rule example

[St I 3(A, 17, k ,m)]
Send(A,{m}k))−−−−−−−−−→ [St I 4(A, 17, k ,m),Out({m}k)]

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 48 of 67

Rewriting-based Protocol Syntax

Fresh and public Terms

Definition (Fresh terms)

Agents generate fresh terms using fresh facts, denoted by Fr. These
fresh terms represent randomness being used, are assumed
unguessable and unique, i.e., can represent nonces.

There is a countable supply of fresh terms, each as argument of a
fresh fact, usable in rules.

Definition (Public terms)

We define public terms to be terms known to all participants of a
protocol. These include all agent names and all constants.

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 49 of 67

Rewriting-based Protocol Syntax

Well-formedness

For a protocol rule l
a−→ r to be well-formed, the following conditions

must be satisfied (except initialization rules):

1 Only In, Fr, and state facts occur in l .

2 Only Out and state facts occur in r .

3 Exactly one state fact occurs in each of l and r .

4 Either In or Out facts occur in the rule, never both.

5 If St R s(A, id , k1, . . . , kn) occurs in l , then

(i) every In fact is of the form In(x), where x ∈ TΣ(X),
(ii) every Out fact is of the form Out(x), where x ∈ TΣ(X) and x is

derivable from public terms, terms in Fr facts occurring in l and
the terms k1, . . . , kn.

(iii) the fact St R s′(A, id , k ′
1, . . . , k

′
m) occurs in r , where s ′ = s + 1

and k ′
1, . . . , k

′
m are derivable from public terms, terms in Fr facts

occurring in l , and the terms k1, . . . , kn.

6 Every variable in r that is not public must occur in l .

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 50 of 67

Rewriting-based Protocol Syntax

Role Syntax

Graphical:

A

{NA, A}pk(B)

{NA,NB}pk(A)

{NB}pk(B)

msc NSPK A

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 51 of 67

Rewriting-based Protocol Syntax

Role specification rules

A

{NA, A}pk(B)

{NA,NB}pk(A)

{NB}pk(B)

msc NSPK A

[St A 1(A, tid , skA, pk(skB)), Fr(NA)] −→
[St A 2(A, tid , skA, pk(skB),NA), Out({NA,A}pk(skB)]

[St A 2(A, tid , skA, pk(skB),NA), In({NA,NB}pk(skA))] −→
[St A 3(A, tid , skA, pk(skB),NA,NB)]

[St A 3(A, tid , skA, pk(skB),NA,NB)] −→
[St A 4(A, tid , skA, pk(skB),NA,NB), Out({NB}pk(skB))]

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 52 of 67

Rewriting-based Protocol Syntax

PKIs and longterm data

A B

{NA, A}pk(B)

{NA,NB}pk(A)

{NB}pk(B)

msc NSPK

Generate longterm keys and public keys.

[Fr(skR)] −→ [Ltk(R, skR),Out(pk(skR))]

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 53 of 67

Rewriting-based Protocol Syntax

Initialization of roles

A

{NA, A}pk(B)

{NA,NB}pk(A)

{NB}pk(B)

msc NSPK A

For each role R there must be an initialization rule which is
instantiated with a name A and a thread identifier id :

[Fr(id), Ltk(A, skA), Ltk(B, skB)]
Create R(A,id)−−−−−−−−→

[St R 1(A, id , skA, pk(skB)), Ltk(A, skA), Ltk(B, skB)]

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 54 of 67

Rewriting-based Protocol Syntax

Role-based Protocol Property Specifications

Definition (Events for property specification)

Event(Term) = Send(R,Term) | Recv(R,Term) |
Claim claimtype(R,Term∗) |
Create R(R, id)

We use Claim actions for property specification. Verification uses
claims and messages.

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 55 of 67

Protocol Semantics

Outline

1 Term Rewriting

2 The Dolev-Yao-Style Adversary

3 AnB Semantics

4 Rewriting-based Protocol Syntax

5 Protocol Semantics

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 56 of 67

Protocol Semantics

Outlook

We will define a trace semantics for protocols in terms of labeled
transition systems.

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 57 of 67

Protocol Semantics

Labeled Multiset Rewriting

Definition (Multiset)

A multiset is a set of elements, each imbued with a multiplicity.
Instead of stating an explicit multiplicity, we may also simply write
elements multiple times.
We use \] for the multiset difference, and ∪] for the union.

Definition (Labeled multiset rewriting)

A labeled multiset rewriting rule is a triple, l , a, r , each of which is a
multisets of facts, and written as:

l
a−→ r

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 58 of 67

Protocol Semantics

State

Definition (State)

A state is a multiset of facts.

Example (State)

St R 1(A, id , k1, k2),Out(k1),Out(k2),Out(k2)

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 59 of 67

Protocol Semantics

Ground substitution

Definition (Ground substitutition)

A substitution is called ground when each variable is mapped to a
ground term.

Definition (Ground instances)

We call the ground instances of a term t all those terms tσ that are
ground for some (ground) substitution.
A fact F is ground if all its terms are ground. The multiset of all
ground facts is G].
For a rule, its ground instances are those where all facts are ground,
and we use

ginsts(R)

for the set of all ground instances of the set of rules R.

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 60 of 67

Protocol Semantics

Fresh rule

Definition (Fresh rule)

We define a special rule for the creation of fresh facts. This is the
only rule allowed to produce fresh facts and has no precondition:

[] −→ [Fr(N)]

Note that each created nonce N is fresh, and thus unique.

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 61 of 67

Protocol Semantics

Labeled operational semantics - single step

Definition (Steps)

For a multiset rewrite system R we define the labeled transition
relation step, steps(R) ⊆ G] × ginsts(R)× G], as follows:

l
a→ r ∈ ginsts(R), l ⊆] S , S ′ = (S \] l) ∪] r

(S , l
a→ r , S ′) ∈ steps(R)

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 62 of 67

Protocol Semantics

Executions

Definition (Execution)

An execution of R is an alternating sequence

S0, (l1
a1→ r1),S1, . . . ,Sk−1(lk

ak→ rk), Sk

of states and multiset rewrite rule instances with

(1) S0 = ∅
(2) ∀i : Si−1, (li

ai→ ri), Si ∈ steps(R)

(3) Fresh names are unique, i.e., for n fresh, and

(li
ai→ ri) = (lj

aj→ rj) = ([]→ [Fr(n)]) it holds that i = j .

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 63 of 67

Protocol Semantics

Trace

Definition (Trace)

The trace of an execution

S0, (l1
a1→ r1),S1, . . . ,Sk−1(lk

ak→ rk), Sk

is defined by the sequence of the multisets of its action labels, i.e.:

a1; a2; . . . ; ak

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 64 of 67

Protocol Semantics

Semantics of a rule

Two parts:

• State transition

• Trace event

Example (Transition example)

[St I 2(A, 17, k), In(m)]
Recv(A,m)−−−−−−→ [St I 3(A, 17, k ,m)]

Agent state changes, and In fact is consumed, while Recv action is
added to trace.

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 65 of 67

Protocol Semantics

Semantics of a rule

Two parts:

• State transition

• Trace event

Example (Transition example)

[St I 2(A, 17, k), In(m)]
Recv(A,m)−−−−−−→ [St I 3(A, 17, k ,m)]

Agent state changes, and In fact is consumed, while Recv action is
added to trace.

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 65 of 67

Bibliography

References

• John Clark and Jeremy Jacob. A survey of authentication
protocol literature, 1997. Available at
http://www.cs.york.ac.uk/ jac/

• Gavin Lowe. A hierarchy of authentication specifications. In
Proceedings of the 10th IEEE Computer Security Foundations
Workshop (CSFW’97), pages 31–43. IEEE CS Press, 1997.

• Benedikt Schmidt. Formal analysis of key exchange protocols
and physical protocols. Ph.D. thesis, ETH Zürich, 2012.
http://dx.doi.org/10.3929/ethz-a-009898924

• Peter Ryan, Steve Schneider, Michael Goldsmith, Gawin Lowe,
and Bill Roscoe. Modelling and Analysis of Security Protocols,
Addison-Wesley, 2000.

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 66 of 67

http://www.cs.york.ac.uk/~jac/
http://dx.doi.org/10.3929/ethz-a-009898924

Bibliography

Explicit vs. Implicit Destructors

Implicit Destructor Rules (no destruction operation)

〈m1,m2〉 ∈ DY(M)

mi ∈ DY(M)
Proji

{|m|}k ∈ DY(M) k ∈ DY(M)

m ∈ DY(M)
DecSym

{m}k ∈ DY(M) (k)−1 ∈ DY(M)

m ∈ DY(M)
DecAsym

{m}(k)−1 ∈ DY(M)

m ∈ DY(M)
OpenSig

versus

Explicit Destructors with algebraic properties

π1(〈m1,m2〉) ≈ m1 {{m}k}(k)−1 ≈ m

π2(〈m1,m2〉) ≈ m2 open({m}(k)−1) ≈ m

{|{|m|}k |}k ≈ m
• Implicit destructor rules are redundant with these properties
• Explicit has strictly more derivable messages
• Considerably more difficult to handle

R. Sasse Tamarin Day 2, v.1 Jan 26, 2016 67 of 67

	Term Rewriting
	The Dolev-Yao-Style Adversary
	AnB Semantics
	Rewriting-based Protocol Syntax
	Protocol Semantics

